
SASB 2011

Towards Abstraction-Based Veri�cation of

Shape Calculus

F. Buti, M. Callisto De Donato, F. Corradini, M.R. Di Berardini,

E. Merelli, L. Tesei1

School of Science and Technology, Computer Science Division
University of Camerino

Via Madonna delle Carceri 9, 62032 Camerino, Italy

Abstract

The Shape Calculus is a bio-inspired timed and spatial calculus for describing 3D geometrical
shapes moving in a space. Shapes, combined with a behaviour, form 3D processes, i.e., individual
entities able to bind with other processes on compatible spatial channels and to split over previously
established bonds. Due to geometrical space, timed behaviours, a wide degree of freedom in de�ning
motion laws and usual non-determinism, 3D processes typically exhibits an in�nite behaviour that
prevents any decidable analysis. Shape Calculus models are currently used only for simulation and,
thus, validation of models and hypothesis testing. In this work we introduce a complementary, and
synergetic, way of using the calculus for systems biology purposes: we de�ne a �rst abstract
interpretation that can be used to verify untimed and unspatial safety properties of a given model.
Such an abstraction focuses on the possible interactions that, during the evolution of the system,
can occur among processes yielding new composed processes and, thus, new species. Other possible
abstract domains for the veri�cation of more expressive properties are also discussed.

Keywords: Abstract interpretation, Process algebra, Spatiality, Systems Biology

1 Introduction

In the context of the challenges raised by Systems Biology to several disci-
plines, computer scientists, among others, have started to contribute trying to
adapt models and languages designed originally for the design and the analysis
of hardware/software systems to biological systems. This adaptation process
has revealed that some of the languages, although general-purpose, needed to

1 Email: {federico.buti,massimo.callisto,flavio.corradini,mariarita.diberar-
dini,emanuela.merelli,luca.tesei}@unicam.it

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Buti et al.

be expanded with concepts and characteristics typical of biological modelling.
One of these features is surely space, considered both in a topological and a
geometrical way. For instance in [3], authors outline a modelling and sim-
ulation approach which covers not only the simulation of individual entities
moving in space but also the stochastic spatial simulation at the population
level and the combination of the two. In [11], instead, the rule-based approach
is extended to take in account position, orientation and geometric structure
of molecules in combinatorially complex chemical reaction systems.

In this context, the Shape Calculus [2,1] was proposed as a very rich lan-
guage to describe mainly, but not only, biological phenomena. The main
characteristics of this calculus are that it is spatial - with a geometric notion
of a 3D space - and it is shape-based, i.e., entities have geometric simple or
complex shapes that a�ect the possible interactions with other entities. In
the Shape Calculus we consider 3D processes consisting of entities with a 3D
shape and a dynamic behaviour, situated in a 3D virtual environment. 3D
processes move accordingly to a personalized (to each process) motion law,
collide and possibly bind each other and compound new 3D processes. Thus,
a network of interacting 3D processes typically exhibits in�nite behaviours.
On the one hand the expressive power of the calculus is very high and it em-
beds natively features that are typical of biomodels. On the other hand, this
richness and in�niteness prevents any application of analysis techniques exist-
ing for untimed and/or unspatial systems. Currently, Shape Calculus models
are used as a base for a related simulation environment, called BioShape [5],
that is used for model de�nition, simulation and validation [4,7] as well as for
hypothesis testing and uniform multi-scale simulations [6].

Orthogonal to simulation-based analysis techniques, a more formal, and
possibly synergetic with simulation, approach to the study of Shape Calculus
models is that of formal veri�cation. In this work we investigate the appli-
cation of the abstract interpretation framework [9,8] on the Shape Calculus
to reduce the complexity of dynamics and, thus, to obtain the decidability of
veri�cation of properties. As a �rst step, we consider an abstract domain in
which time, movements and space are abstracted in order to focus only on all
possible bounds and splits that can occur among processes. This permits to
prove, by performing a �nite �xpoint iteration, untimed and unspatial safety
properties such as �a species formed by the binding of glucose and ATP can
never be generated in the evolution of the system�.

The paper is structured as follows: Section 2 introduces the main concepts
of the Shape Calculus, Section 3 describes the proposed abstract interpre-
tation, �nally Section 4 discusses other possible abstractions to verify more
expressive properties.

2

Buti et al.

2 Shape Calculus: a calculus for moving shapes

Let P,V = R3 be the sets of positions and velocities, resp., in a global three
dimensional coordinate system. We also assume relative coordinate systems,
the local coordinate system, that will always be w.r.t. a certain shape S with
origin in a reference point p (the centre of S). The local coordinate system
allows us to express parts of the shape independently from its actual global
position. Given p ∈ P expressed in global coordinates and V ⊆ P a set of
points expressed in a local coordinate system whose origin is p, the function
global(V, p) = V +p = {x+p | x ∈ V } denotes V w.r.t. the global coordinates.

2.1 Shapes

Any 3D shape can be approximated - with arbitrary precision - by composing
basic shapes i.e. �glueing� shapes on common surface. Basic shapes can be
spheres, cones, cylinders or convex polyhedra.

De�nition 2.1 (3D shapes) The set S of 3D shapes, ranged over by S, S ′, · · · ,
is generated by the grammar: S ::= σ

∣∣ S 〈X〉S where σ is a basic shape. A
basic shape is de�ned by the tuple σ = 〈V,m,p,v〉 where V ⊆ P, m ∈ R+ is
the mass, p ∈ P the centre of mass and v ∈ V the velocity of σ. If S = σ =
〈V,m,p,v〉, we de�ne P(S) = V , m(S) = m, R(S) = p, v(S) = {v} to be,
resp., the set of points, mass, reference point and velocity of σ. B(S) ⊂ V is
the set of points on the surface of σ. S = S1 〈X〉S2 is a compound shape 2

where X ⊆ P. We let P(S) = P(S1)∪P(S2), m(S) = m(S1)+m(S2), R(S) =(
m(S1)·R(S1)+m(S2)·R(S2)

)
/
(
m(S1)+m(S2)

)
3 and v(S) = v(S1)∪v(S2)

4 .
Finally we de�ne the boundary of a compound shape S as the set of global
points B(S) = (B(S1) ∪ B(S2))\{x ∈ P |x is interior of P(S1) 〈X〉 P(S2)}.

Continuous trajectories of shapes are approximated with a polygonal
chain [10] and velocities are updated on the vertices of the chain, instead
of continuously update them. Let T ∈ R+

0 be the time domain. We divide T
into an in�nite sequence of time steps ti s.t. t0 = 0 and ti ≤ ti−1 + ∆ for all
i > 0, where ∆ is called movement time step and depends on the desired de-
gree of approximation. The updating of velocities is performed by exploiting
a function steer : T→ (S ↪→ V) 5 that describes how the velocity of all existing
shapes, at each time t, is changed. Both velocity update and evolution of
shapes are represented as an update of the shape tuples.

In some situations, the duration of a time step can be shorter than ∆ since
collisions can occur before the end of the time step. These collisions must

2 In this paper we consider only compound shapes that are well-formed according to [1].
3 Again for simplicity, we use the centre of mass as the reference point.
4 Well-formed shapes must have a singleton as set of velocities.
5 Given a time instant t ∈ T, steer t S is unde�ned i� shape S does not exist at time t.

3

Buti et al.

be resolved and the whole system must re-adapt itself to the new situation
through a collision response mechanism (see [2] for more details).

2.2 Behaviour of shapes

The internal behaviour of a shape is described as a variant of TCCS [12]
where basic actions provide information about binding capabilities and split
possibilities. Let Λ = {a, b, · · · } be a countably in�nite set of channels names
and Λ = {a | a ∈ Λ} the corresponding co-channels names with a = a for each
a. Elements in A = Λ ∪ Λ are ranged over by α, β, · · · .

Binding capabilities are represented by channels, i.e. pairs 〈α,X〉 where
α ∈ A is a name and X is a surface of contact. Intuitively, X is a subset
of the boundary of a shape where the channel is active and, thus, bindings
are enabled on it. Names introduce a notion of compatibility: if β = α
and X ∩ Y 6= ∅ then 〈α,X〉 and 〈β,X〉 are compatible, otherwise they are
incompatible. Compatibility is used to determine if a collision between two
shapes is elastic (channels not compatible) or inelastic (otherwise).

We also introduce two di�erent kinds of actions, ω(α,X) and ρ(α,X), to
represent weak and strong splits of shape bonds, respectively. With an abuse
of notation, two strong-split actions ρ(α,X) and ρ(β, Y) are compatible if so
are the channels 〈α,X〉 and 〈β, Y 〉. We will see that a synchronization between
multiple pairs of compatible strong-split actions correspond to a strong-split
operation. Split operations behave di�erently w.r.t. time passing: enabled
strong-splits forbid time passing, while weak-splits can be arbitrarily delayed.

Let C be the set of all channels, ω(C) = {ω(α,X) | 〈α,X〉 ∈ C} and ρ(C) =
{ρ(α,X) | 〈α,X〉 ∈ C} be the sets of weak-split actions and strong-split actions,
resp. Our processes perform atomic actions belonging to the set Act = C ∪
ω(C)∪ ρ(C) whose elements are ranged over by µ, µ′, · · · . We �nally assume a
countably in�nite collection K of process name or process constants.

De�nition 2.2 (Shape behaviours) The set of shape behaviours, denoted by
B, is generated by the following grammar:

B ::= nil
∣∣ 〈α,X〉.B ∣∣ ω(α,X).B

∣∣ ρ(L).B
∣∣ ε(t).B ∣∣ B +B

∣∣ K
where 〈α,X〉 ∈ C, L ⊆ C (non-empty) whose elements are pairwise incompat-
ible, t ∈ T and K ∈ K.

As usual the nil operator can only let time pass without limits 6 . 〈α,X〉.B
and ω(α,X).B are (action-)pre�xing known from CCS. 〈α,X〉.B exhibits a
binding capability along the channel 〈α,X〉, while ω(α,X).B models the be-
haviour of a shape that, before evolving in B, wants to split a single bond
established via the channel 〈α,X〉. ρ(L).B is the strong-split operator; it can

6 A trailing nil will often be omitted; e.g. 〈α,X〉.ω(α,X) abbreviates 〈α,X〉.ω(α,X).nil.

4

Buti et al.

Prefa
µ ∈ C ∪ ω(C)

µ.B
µ−→ B

Dela
B

µ−→ B′

ε(0).B
µ−→ B′

Suma
B1

µ−→ B′1

B1 +B2
µ−→ B′1

Str1

L = {〈α,X〉}

ρ(L).B
ρ(α,X)−−−−→ B

Str2

L = {〈α,X〉} ∪ L′ L′ 6= ∅

ρ(L).B
ρ(α,X)−−−−→ ρ(L′).B

Str3

B
ρ(α,X)−−−−→ B′

ρ(L).B
ρ(α,X)−−−−→ ρ(L).B′

Nilt
nil

t
 nil

Preft
µ ∈ C ∪ ω(C)

µ.B
t
 µ.B

Strt
ρ(L).B

t
 ρ(L).B

Sumt
B1

t
 B′1 B2

t
 B′2

B1 +B2
t
 B′1 +B′2

Delt
t′ ≥ t

ε(t′).B
t
 ε(t′ − t).B

Delc
B

t
 B′

ε(t′).B
t+t′

 B′

Table 1
Functional and Temporal behaviour of B's terms

evolve in B only if all strong split actions ρ(α,X) with 〈α,X〉 ∈ L can be
performed simultaneously. The other operators are the same as given in [12].

Rules in Table 1 de�ne a weak 7 temporal transition relation
t
;⊆ (B×B)

for t ∈ T and the action transition relation
µ→⊆ (B × B) for µ ∈ Act. Most

of the temporal rules are those provided in [12]. In our case rules Preft

and Strt state that processes like 〈α,X〉.B, ω(α,X).B and ρ(L).B can be
arbitrarily weak-delayed. Regarding functional rules, the only worth not-
ing are Str1 and Str2, de�ning strong-split behaviours. If 〈α,X〉 ∈ L then
ρ(L).B can do a ρ(α,X)-action and evolves either in B (if L = {〈α,X〉})
or in ρ(L\{〈α,X〉}).B (otherwise). Rule Str3 is needed to handle arbitrarily
nested terms, e.g. ρ({〈a,X}).ρ({〈b, Y }).B. Other rules are as expected. For
brevity, symmetric rules and rules for process variables have been omitted.

2.3 3D processes and their semantics

Behaviours and shapes are compounded to create 3D processes, the basic
building blocks of a Shape Calculus network.

De�nition 2.3 (3D processes) The set 3DP of 3D processes is generated by
the grammar P ::= S[B]

∣∣ P 〈a,X〉P , where S ∈ S, B ∈ B, a ∈ Λ and X ⊆ P
non-empty. The shape of each P ∈ 3DP is de�ned by induction as follows:
shape(S[B]) = S, shape(P 〈a,X〉Q) = shape(P) 〈X〉 shape(Q).
We also write steer t P to denote P |[steer t shape(P)]|.

Rules in Table 2 de�ne the temporal transition relation
t
 ⊆ (3DP× 3DP)

7 This weak relation is used when giving temporal semantics to 3D processes. It will become
a real time passing if and only if a strong split of a compound process, which is considered
urgent, is not enabled.

5

Buti et al.

Basict
B

t
 B′

S[B]
t
 (S + t)[B′]

Compt
P

t
 P ′ Q

t
 Q′ X ′ = X + (t · v(P))

P 〈a,X〉Q t
 P ′ 〈a,X ′〉Q′

Basicc
B
〈α,X〉−−−−→ B′ Y = global(X,R(S))

S[B]
〈α,Y 〉−−−−→ S[B′]

Basics
B

ρ(α,X)−−−−→ B′ Y = global(X,R(S))

S[B]
ρ(α,Y)−−−−→ S[B′]

Comps
P

ρ(α,Y)−−−−→ P ′

P 〈a,X〉Q ρ(α,Y)−−−−→ P ′ 〈a,X〉Q
Compw

P
ω(α,Y)−−−−→ P ′

P 〈a,X〉Q ω(α,Y)−−−−→ P ′ 〈a,X〉Q

Compc
P
〈α,Y 〉−−−−→ P ′ Y ⊆ B(P 〈a,X〉Q)

P 〈a,X〉Q 〈α,Y 〉−−−−→ P ′ 〈a,X〉Q
StrPar

P
ρ(b,Y)⇒ P ′

P 〈a,X〉Q ρ(b,Y)⇒ P ′ 〈a,X〉Q

StrSync
P

ρ(α,Xp)−−−−−→ P ′ Q
ρ(α,Xq)−−−−−→ Q′ α ∈ {a, a} X = Xp ∩Xq

P 〈a,X〉Q ρ(a,X)⇒ P ′ 〈a,X〉Q′

Table 2
Functional and temporal behaviour of 3DP-terms

for t ∈ T and the functional transition relation
µ−→⊆ (3DP× 3DP) for µ ∈ Act.

Essentially, a 3D process inherits its behaviour from the B-terms de�ning
its internal behaviour, but now sites of binding capabilities and split actions
are expressed w.r.t. a global coordinate system (see rules Basicc and Basics).
Note that rule Basicw, omitted, is similar to Basics replacing the ρ()-action
with the ω()-action. Other symmetric rules are omitted. Rules StrSync and

StrPar de�ne the transition relations
ρ(a,X)⇒ ⊆ (3DP× 3DP) for strong-split of

compatible channels 8 . Recall that strong-split operations require that all the
enabled strong-splits have been performed together before time passes further.
In such a case we say that a process P ∈ 3DP is able to complete a reaction,
written P ↘. According to [1] we restrict the timed operational semantics of

3D processes and we say that P
t−→ Q i� P

t
 Q and either P 6 ρ−→ or P 6↘.

De�nition 2.4 (Networks of 3D processes) The set N of networks of 3D
processes (3D networks, for short) is generated by the grammar N ::=
Nil
∣∣ P ∣∣ N ‖N .

We now provide a sketch of 3D networks semantics. A full description can
be found in [1]. 3D networks can perform actions ρ, ω, κ and t. ρ, ω represent
strong- and weak-split operations, κ corresponds to a collision detection and
response event and t is time passing. The �rst two actions de�ne transitions
N

ν−→ N ′ 9 where ν ∈ {ρ, ω} after which new 3D processes are created from

8 Replacing ρ(−) with ω(−) we obtain
ω(a,X)⇒ ⊆ (3DP× 3DP).

9 If ν = ρ, N
ν−→ N ′ represents strong-split operations from P contained in N and P ↘.

6

Buti et al.

the splitting of bounds 10 . A transitions N
κ−→M represents collision response,

executed when collisions are detected within the current ∆. Note that all
collisions, elastic and inelastic, are resolved simultaneously in N . We assume
that an inelastic collision always replaces the original pair of processes with the
resulting 3D compounded process. The new con�guration will be N ′ = M ‖
P1〈a,X〉Q1 if ∃ P,Q ∈ N s.t. P

〈α,Xa〉−−−−→ P1, Q
〈α,Xb〉−−−→ Q1, α ∈ {a, a}, X ∈

Xa ∩ Xb, X 6= ∅. We used M to denote the rewriting of N without P and

Q. From the considerations above, the time step N
t−→ N ′ with t ∈ T and

0 ≤ t ≤ ∆ can be either t = ∆ if no collision is detected or t = t′ < ∆ where t′

is the time of collision detection. After each such time step, the steer function
updates shape velocities.

We now give a very simple example that has only the purpose of showing
the features of the calculus without any particular biological outcome. Note
that, by now, the more promising biological applications of the Shape Calculus
is at the cell/tissue level [4].

Example 2.5 (First Glycolysis step) The glycolysis pathway is part of the
process by which individual cells produce and consume nutrient molecules.
Here we focus on the �rst reaction:

glucose, ATP −−⇀↽−− glucose-6-phosphate, ADP, H+

The 3D processes SGLC [GLC], SATP [ATP] and SHEX [HEX] represents the re-
actants. Their shapes are approximations of public available 3D models and
their behaviours are de�ned as follows:

HEX = 〈atp, Xha〉.HA + 〈glc, Xhg〉.HG,
HA = ω(atp, Xha).HEX + ε(th).〈glc, Xhg〉.ρ({〈atp, Xha〉, 〈glc, Yhg〉}).HEX,
HG = ω(glc, Xhg).HEX + ε(th).〈atp, Xha〉.ρ({〈atp, Xha〉, 〈glc, Yhg〉}).HEX,
ATP = 〈atp, Xah〉.(ε(ta).ρ({〈atp, Xah〉}).ADP + ω(atp, Xah).ATP)

GLC = 〈glc, Xgh〉.(ε(tg).ρ({〈glc, Xgh〉}).G6P + ω(glc, Xgh).GLC

The Hexokinase process evolves by binding with one instance of each
metabolite. Once it has connected with both of them and all delays are con-
sumed, a strong-split action is possible, i.e., the reaction occurs. Glucose and
ATP evolves to glucose-6-phosphate and ADP, which we assume to be, for
simplicity, nil.

10 In [1] the function split : 3DP × ℘(C) → N is used to �physically� �nalize splitting of 3D
processes. split is inductively de�ned on a process P ∈ 3DP and a set of channels C ∈ C as
split(P,C) = split(R,C)||split(Q,C) if P = R〈a,X〉Q and 〈a,X〉 ∈ C, P otherwise.

7

Buti et al.

3 Abstract interpretation of Shape Calculus

Let us consider a 3D network whose components are several (a �nite number)
instances of the processes described in Example 2.5, i.e., they are 3D pro-
cesses located in di�erent positions and with di�erent velocity vectors. Such
a network evolves in many di�erent con�gurations due to the steer function,
the timing behaviour and the non-determinism of interactions and splittings.
In this section we provide an abstraction of the Shape Calculus where a set
of 3D networks is abstracted to a set of 3D abstract processes. The concrete
domain that we consider is the power set of the set of all 3D networks.

De�nition 3.1 (Concrete Domain) The concrete domain is the complete lat-
tice (℘(N), ⊆, ∪, ∩, {}, N) where ℘ is the power set operator, set union is the
least upper bound (lub), set intersection is the greatest lower bound (glb), {}
is the bottom element and N is the top element.

We deal with abstract 3D processes, i.e., 3D processes without position and
velocity. In the following we use the notation S], B], and 3DP] to denote the
set of abstract shapes, abstract behaviours and abstract 3D processes, respec-
tively. A basic shape σ = 〈V,m, p, v〉 is abstracted to σ] = 〈V,m,�,�〉 where
� represents any set of points in the global coordinate system. Inductively on
the syntactic structure, S〈X〉S is abstracted to S]〈�〉S] and a 3D processes
P 〈a,X〉Q is abstracted to P]〈a,�〉Q]. In a similar fashion, all time delays
ε(t) are collapsed to ε(·) which represents a zero delay.

As usual, the abstraction is formalised by means of abstraction functions α
and concretization functions γ. In Table 3 we de�ne the abstraction functions
αS : S → S], αB : B → B] and αP : ℘(N) → ℘(3DP]) to abstract shapes,
behaviours and 3D processes, respectively. Note that αB does not abstract
from local binding sets X. In fact, in the abstraction we are only interested in
all possible binding capabilities between abstract 3D processes. The abstract
semantics introduced later on will consider a pair of channel compatible if
they belong to the same type, abstracting from the region of contact. Thus,
retaining X does not e�ect the abstract interpretation in any case. Also
note that temporal delays are zeroed since we are considering all the possible
bindings at any time. Finally, the abstraction function of a network or a set
of networks returns a set of abstract 3D processes. It is important to remark
that several instances of the same entity can be contained in a network. For
instance, in the Example 2.5 we would have several HEX as well as several
GLC and ATP to represent di�erent concentrations over the space. After
abstracting from space and velocity, all the instances of a same 3D process
collapse to a unique abstract 3D process. Hence, elements of the abstract
domain are sets of abstract 3D processes.

8

Buti et al.

αS(σ) = 〈V,m,�,�〉
αS(S〈X〉T) = αS(S)〈�〉αS(T)
αB(nil) = nil]

αB(〈a,X〉.B) = 〈a,X〉.αB(B)

αB(B1 +B2) = αB(B1) + αB(B2)

αB(ω(a,X).B) = ω(a,X).αB(B)

αB(ρ(a,X).B) = ρ(a,X).αB(B)

αB(ε(t).B) = ε(·).αB(B)

αB(ρ(L).B) = ρ(L).αB(B)

αP (S[B]) = αS(S)[αB(B)]

αP (P 〈a,X〉Q) = αP (P)〈a,�〉αP (Q)

αP (‖i∈I Pi) =
⋃
i∈I{α(Pi)}

Table 3
Abstraction functions

De�nition 3.2 (Abstract Domain) The abstract domain is denoted A and it
is the complete lattice (℘(3DP]), ⊆, ∪, ∩, {}, 3DP]).

Table 4 shows the corresponding concretization functions that produce all
the possible elements of the concrete domain in terms of absolute position in
space, velocity and number of processes instances in the environment.

For γS we assume to limit the velocity of shapes by a maximal velocity
vmax. This is needed to guarantee the consistency of the collision detection
system. We remark that γS generates from a compounded abstract shape a set
of concrete compounded shapes such that the intersection of their boundaries
is not empty. Although the set contains also interpenetrating shapes, i.e. not
well-formed [1], this does not a�ect the correctness of the abstraction. The
same assumptions are used in γP (P]〈a],�〉Q]) in order to obtain the set of
instances of a compounded abstract 3D process. Finally, γP ({P]

1 , . . . , P
]
n})

generates the set of all possible sets of concrete 3D networks. Each set di�ers
in its cardinality and in the number of concrete instances of each abstract 3D
process. Note that the cardinality can be zero, thus in some of the generated
concrete networks some species are not present.

Proposition 3.3 (Galois insertion) Let a ∈ 3DP] and C ∈ ℘(N). α and γ
forms a Galois insertion: i) α and γ are monotonic, ii) C ⊆ γ(α(C)), iii)
α(γ(a)) = a.

The abstract semantics is given substituting each concrete rule with its ab-
stract version. Because of their similarity, we use the same rules de�ned in the
previous section, except those re�ned in Table 5. In such a case the concrete
syntax is substituted by the abstract one introduced before. Accordingly, the

9

Buti et al.

γS(σ
]) = {σ = 〈V,m, p, v〉 | p ∈ P, 0 ≤ ‖v‖ ≤ vmax}

γS(S
]〈�〉T]) = {S〈Y 〉T |S ∈ γS(S]), T ∈ γS(T]),

Y ⊆ B(S) ∩ B(T), Y 6= ∅}
γB(nil

]) = {nil}
γB(〈a,X〉.B]) = {〈a,X〉.B |B ∈ γB(B])}
γB(B

]
1 +B]2) = {B1 +B2 |B1 ∈ γB(B]1), B2 ∈ γB(B]2)}

γB(ω(a,X).B]) = {ω(a).B |B ∈ γB(B])}
γB(ρ(a,X).B]) = {ρ(a,X).B |B ∈ γB(B])}
γB(ε(·).B]) = {ε(t).B | t ∈ T, B ∈ γB(B])}
γB(ρ(L).B

]) = {ρ(L).B |B ∈ γB(B])}
γP (S

][B]]) = {S[B] |S ∈ γS(S]), B ∈ γB(B])}
γP (P

]〈a],�〉Q]) = {P 〈a,X〉Q |P ∈ γP (P]), Q ∈ γP (Q]),
X ⊆ B(shape(P)) ∩ B(shape(Q)), X 6= ∅}

γP ({P]1 , . . . , P]n}) = ℘({N ∈ N |N = (‖ni=1 (‖P∈Ui
P))}) where

∀i ∈ {1, . . . , n} (Ui ∈ ℘(γP (P]i)) ∧ Ui �nite)

Table 4
Concretization functions

abstract rules will de�ne abstract transition relations that are the same given
in the concrete semantic but marked with symbol]. We remark that rules in
Table 5 are needed to abstract away from space and velocity. Rules Basic]c and
Basic]s simply return a channel without information on the region of contact.
Indeed, rule StrSync2 now considers two channels compatible if and only if
they belong to the same name type. Symmetric rules and rules for weak-split
have been omitted. In the latter case, it is enough to replace ρ-action with
ω-action. Finally, note that timing rules are retained although time is zeroed.
These rules are only used for the proof of local correctness. They will not cre-
ate circularities because, generating the same abstract processes once applied,
they do not a�ect the abstract �xpoint iteration. Other rules that are similar
to the concrete semantics behave as expected.

The interactions of abstract 3D processes are the focus of our abstraction.
An abstract network N] = {P]

1 , . . . , P
]
n} performs the same type of transitions

of a corresponding concrete one. Thus, we consider similar transition relations
t−→],

ν−→] and
κ−→]. In the abstract domain temporal transitions do not change

the network, i.e., for each generic abstract network N] we have that N] t−→] N
].

The transition relation
ν−→] remains the same for ν = ω as well as in case of

strong-splits. However, given the semantics of
t−→] (see Section 2), in the

abstract domain a process is always able to complete a reaction, i.e. P ↘, if
all the involved splits are enabled, no matter of delays. In case of interactions

10

Buti et al.

Del]a
B]

µ−→] B
′]

ε(·).B] µ−→] B
′]

Del]t
ε(·).B] t

] ε(·).B]
Del]c

B]
t
] B

′]

ε(·).B] t′

] B
′]

Comp]t
P]

t
] P

′] Q]
t
] Q

′]

P] 〈a,�〉Q] t
] P

′] 〈a,�〉Q′]
Comp]c

P]
〈a,�〉−−−−→] P

′]

P 〈a,�〉Q] 〈a,�〉−−−−→] P
′] 〈a,�〉Q]

Basic]c
B]

〈a,X〉−−−−→] B
′]

S][B]]
〈a,�〉−−−−→] S

][B′]]
Basic]s

B]
〈a,X〉−−−−→] B

′]

S][B]]
ρ(α,�)−−−−→] S

][B′]]

StrSync]
P]

ρ(α,�)−−−−→] P
′] Q]

ρ(α,�)−−−−→] Q
′] α ∈ {a, a}

P] 〈a,�〉Q] ρ(a,�)⇒ P ′] 〈a,�〉Q′]

Table 5
Abstract Rules for B] and 3DP] terms

due to collisions, N]
1

κ−→] N
]
2, we de�ne

N]
2 = N]

1 ∪ {R] | ∃ P], Q] ∈ N]
1 : P] 〈α,�〉−−−→] P

]
1 , Q

] 〈α,�〉−−−→] Q
]
1, α ∈ {a, a} ∧

R] = P]
1〈a,�〉Q

]
1}

It can be proven that for each local operator, that is to say, for each rule
de�ning the concrete semantics, the abstract version is a correct approximation
of the concrete one. Thus, by the general results of abstract interpretation,
we get that the de�ned abstraction is globally correct. In order to perform a
veri�cation we need to instruct a �xpoint iteration. Let N be the network we
want to test:

• F ↑0 (N) = α({N})
• F ↑n (N) =

⋃
M]∈{N]|F↑n−1(N)

x−→]N], x∈{ω,ρ,κ,t}}M
]

Note that even if the behaviours of the involved abstract 3D processes are
�nite state processes, then the possible number of di�erent abstract networks
is not guaranteed to be �nite. Indeed, some processes can be de�ned that
mimic unbounded polymers, for instance a compound process that can always
be compounded with an existing species and then continues to do so. Thus,
it is not always guaranteed that the �xpoint iteration stops in a �nite number
of steps. If this happens, however, we can look at the obtained set of abstract
processes and can conclude that if a species is not present, then it can never
appear in any of the actual concrete traces. Further abstractions are required
to guarantee the termination in the general case.

Example 3.4 (Glucose/ATP bond) Consider again Example 2.5. We are
now interested in verifying if it is possible for a glucose and an ATP molecule
to interact, i.e., bind. Considering any concrete network with some instances
of the 3D processes de�ned in the example, the abstraction will always be the

11

Buti et al.

set of the following three abstract processes:

ATP] = S]a[ATP
]] , GLC] = S]g[GLC

]] and HEX] = S]a[HEX
]]

The contained behaviour is almost identical to the concrete one due to the
de�nition of αB. We can now apply the abstract transition relations presented
above. At each step only the changing or newly created processes are shown
for the sake of brevity. First step is the execution of a collision transition. We
obtain the possible combination of the Hexokinase with the two metabolites:

{HEX][XG]] 〈glc,�〉 GLC][ε(·).ρ({〈glc, Xgh〉}).nil + ω(glc, Xgh).GLC
]],

HEX][XA]] 〈atp,�〉 ATP][ε(·).ρ({〈atp, Xah〉}).nil + ω(atp, Xah).ATP
]]}

Now both processes can weakly split on the newly created bold and get
back to original unbound processes (see XG]/XA]) or execute a delay. Since
time is abstracted away, we can execute the subsequent actions. Thus, at this
stage we can weakly split the current enable bond or bind with ATP (glucose
respectively). In both cases we obtain the same compound:

{GLC][ε(·).ρ({〈glc, Xah〉}).nil + ω(glc, Xah).GLC
]] 〈glc,�〉

HEX][ρ({〈atp, Xah〉, 〈glc, Xgh〉})] 〈atp,�〉
ATP][ε(·).ρ({〈atp, Xah〉}).nil + ω(atp, Xah).ATP

]]}

According to the concrete domain glc-hex-atp would not be able to com-
plete a reaction, i.e. glc-hex-atp 6↘ due to the delays of both GLC and ATP.
This is not the case of the abstract domain in which the strong-split action
can be executed. Thus we obtain also {GLC][nil]], ATP][nil]]}. No further
transition for these processes can be executed, so �xpoint is reached. Hence,
we can conclude, for instance, that GLC and ATP processes cannot interact
directly between each other.

4 Conclusions and Future work

In this paper we have applied abstract interpretation to the Shape Calculus, a
bio-inspired calculus, with the aim to check properties that would be impossi-
ble to check in the concrete algebra, due to the variability induced by motion
laws, space, time and interaction-related non-determinism. In particular we
were interested in proving untimed and unspatial safety properties. The use
of the abstract interpretation framework is based on the abstraction of spa-
tial information from the shapes and on the temporal abstraction of shapes
behaviours. This extension simpli�es the semantics of the calculus and drasti-
cally reduces the state space of a given 3D network. Concerning future work,
on the one hand a further abstraction must be de�ned in order to always guar-
antee the termination of the current abstraction when processes behaving like
unbounded polymers are present. On the other hand, a re�nement of the cur-

12

Buti et al.

rent abstraction in which time is retained is certainly of interest. This would
permit the veri�cation of quantitative timed safety properties like �glucose-
6-phosphate will never be produced before 20 milliseconds�. The long-term
objective is to construct a lattice of abstract domains permitting the checking
of a large variety of di�erent possibly quantitative properties, maybe some-
times abstracting only time and not space, or abstracting behaviours, but not
motion.

References

[1] Bartocci, E., D. R. Cacciagrano, M. R. D. Berardini, E. Merelli and L. Tesei, Timed operational
semantics and well-formedness of shape calculus, Sci. Ann. Comp. Sci. 20 (2010), pp. 32�52.

[2] Bartocci, E., F. Corradini, M. R. D. Berardini, E. Merelli and L. Tesei, Shape calculus. a spatial
mobile calculus for 3d shapes, Sci. Ann. Comp. Sci. 20 (2010), pp. 1�31.

[3] Bittig, A. T., M. Jeschke and A. M. Uhrmacher, Towards modelling and simulation of crowded
environments in cell biology, AIP Conference Proceedings 1281 (2010), pp. 1326�1329.
URL http://link.aip.org/link/?APC/1281/1326/1

[4] Buti, F., D. Cacciagrano, F. Corradini, E. Merelli, L. Tesei and M. Pani, Bone Remodelling in
BioShape, Electronic Notes in Theoretical Computer Science 268 (2010), pp. 17�29, Proc. of
CS2Bio 2010.

[5] Buti, F., D. R. Cacciagrano, F. Corradini, E. Merelli and L. Tesei, BioShape: a spatial shape-
based scale-independent simulation environment for biological systems, Procedia Computer
Science 1 (2010), pp. 827�835, Proc. of 7th Int. Workshop on Multiphysics Multiscale Systems,
ICCS 2010.

[6] Buti, F., D. R. Cacciagrano, F. Corradini, E. Merelli and L. Tesei, A uniform multiscale meta-
model of BioShape, Electronic Notes in Theoretical Computer Science (To appear 2011), Proc.
of Cs2Bio 2011, June 9th, Reykjavik, Iceland.

[7] Cacciagrano, D., F. Corradini and E. Merelli, Bone Remodelling: A Complex Automata-Based
Model Running in BioShape, in: ACRI 2010, LNCS 6350, 2010, pp. 116�127.

[8] Cousot, P., Abstract interpretation, ACM Comput. Surv. 28 (1996), pp. 324�328.

[9] Cousot, P. and R. Cousot, Abstract interpretation frameworks, J. Log. Comput. 2 (1992),
pp. 511�547.

[10] Ericson, C., �Real-time collision detection,� Elsevier North-Holland, Inc., 2005.

[11] Gruenert, G., B. Ibrahim, T. Lenser, M. Lohel, T. Hinze and P. Dittrich, Rule-based spatial
modeling with di�using, geometrically constrained molecules, BMC Bioinformatics 11 (2010),
p. 307.
URL http://www.biomedcentral.com/1471-2105/11/307

[12] Yi, W., Real-time behaviour of asynchronous agents, in: CONCUR, 1990, pp. 502�520.

13

http://link.aip.org/link/?APC/1281/1326/1
http://www.biomedcentral.com/1471-2105/11/307

	Introduction
	Shape Calculus: a calculus for moving shapes
	Shapes
	Behaviour of shapes
	3D processes and their semantics

	Abstract interpretation of Shape Calculus
	Conclusions and Future work
	References

