
FBTC 2008

Model Checking Biological Oscillators

Ezio Bartocci,1 Flavio Corradini,2 Emanuela Merelli,3

Luca Tesei4

Dipartimento di Matematica e Informatica
University of Camerino

Via Madonna delle Carceri, 9, Camerino (MC), 62032, Italy

Abstract

We define a subclass of timed automata, called oscillator timed automata, suitable to model biological
oscillators. The semantics of their interactions, parametric w.r.t. a model of synchronization, is introduced.
We apply it to the Kuramoto model. Then, we introduce a logic, Kuramoto Synchronization Logic (KSL),
and a model checking algorithm in order to verify collective synchronization properties of a population of
coupled oscillators.

Keywords: Spontaneous synchronization, Kuramoto model, oscillator timed automata, KSL, model
checking

1 Introduction

Synchronization phenomena in large populations of interacting components are
widely represented in nature and intensively studied as physical, biological, chem-
ical, and social systems. In Biology, examples include networks of pacemaker cells
in heart [15], nervous system [8], group of synchronously flashing fireflies [6], just to
mention some of those analyzed by Strogatz in his exciting book [16]. Understand-
ing a synchronized collective behavior is essential in Systems Biology especially for
developing methods to control the dynamics of systems with desired properties [10].

The distributed synchronization of biological systems is commonly modeled us-
ing the theory of coupled oscillators proposed by several authors Art Winfree [18],
Charles S. Peskin [15] and Yoshiki Kuramoto [11]. In this theory, each member of
the population is modeled as a phase oscillator running independently at its own
frequency. The synchronization could be achieved coupling each oscillator to all

1 Email: ezio.bartocci@unicam.it
2 Email: flavio.corradini@unicam.it
3 Email: emanuela.merelli@unicam.it
4 Email: luca.tesei@unicam.it

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:ezio.bartocci@unicam.it
mailto:flavio.corradini@unicam.it
mailto:emanuela.merelli@unicam.it
mailto:luca.tesei@unicam.it

the others and making them to interact with a certain strength. Whereas, the con-
trol is achieved either by introducing artificial oscillators or a new impulse, or by
changing the parameters of individual oscillators. This approach gives rise to an
artificial control strategy as it has been proposed by Wang in his recent work [17].
In the case of fireflies, an oscillator represents the internal clock dictating when
to flash. Upon reception of a pulse from other oscillators, the clock is regulated.
Over time, the synchronized behavior emerges, i.e. pulses of different oscillators
are transmitted simultaneously, and then all fireflies simultaneously flash. The
most successful attempt to model distributed synchronization has been proposed
by Yoshiki Kuramoto. The Kuramoto’s model, based on Winfree’s ideas that mu-
tual synchronization is a cooperative phenomenon, a temporal analogue of phase
transition encountered in statistical physics, is beautiful and analytically tractable
model. A wide description of the Kuramoto model can be found in [1].

In this paper, we define a subclass of timed automata, called oscillator timed au-
tomata, suitable to model oscillators. Then, we introduce an interaction semantics
which is parametric w.r.t. a model of synchronization. Subsequently, we instantiate
it to the Kuramoto model. The main advantage of our approach is that although
the timed automata show different behaviors, w.r.t. their original ones, when inter-
acting, we do not need to change their structure. This is obtained by using a global
time measure, which is the one of the observer, and several internal relative time
measures, one for each oscillator, which are then re-scaled to the global time.

We also provide a Kuromoto Synchronization Logic (KSL) in order to specify
properties on synchronization, during a simulation, of Kuramoto based oscillators.
Moreover, we propose a model checking algorithm for the logic. We test it by
verifying some properties with a prototype simulator and model checker that we
have implemented.

The paper proceeds as follows: Section 2 introduces related works and the Ku-
ramoto model. Section 3 recalls timed automata, defines oscillator timed automata,
and specifies the interaction semantics. Section 4 introduces the Kuramoto Syn-
chronization Logic (KSL) and its model checking algorithm. Section 5 shows an
example of analysis and Section 6 concludes outlining some directions for future
work.

2 Background

2.1 Related work

During these last decades, several mathematical models have been proposed to study
the spontaneous synchronization phenomena in a population of biological coupled
oscillators [16]. These models have been inspired by real biological systems, ranging
from the mutual synchronization of cardiac and circadian pacemaker cells to the
rhythmically flashing of fireflies and wave propagation in heart, brain, intestine and
nervous system. In these systems, mutual synchronization could be performed both
through episodic impulses and through smooth interactions.

The first case, in which a population of the so called pulse-coupled oscillators
communicate by sudden pulse-like interactions - i.e. a neuron that fires - was first

2

studied by Peskin [15], who proposed a model of the mutual synchronization of
sinotrial node pacemaker cells. He worked with identical oscillators and he con-
jectured that for any arbitrary conditions, they would all end up firing in unison.
He proved this property for N = 2 oscillators and later Mirollo and Strogatz [14]
demonstrated that the conjecture holds for all N . Peskin also conjectured that syn-
chronization would occur even if the oscillators were not quite identical, but that
problem remains still open.

For the second case, in which the interactions between oscillators are smooth,
a first approach was proposed by Winfree [18] that introduced a model of nearly
identical, weakly coupled limit-cycle oscillators. Using numerical simulation, he
discovered that for these starting conditions, the system behaves incoherently, with
each oscillator running at its natural frequency. He also found that, as the coupling
is increased, the unsynchronized incoherence continues until a certain threshold,
when a group of oscillators jump suddenly into synchrony.

Starting from Winfree’s results and assumptions, Kuramoto began working with
collective synchronization phenomena and he proposed a refined model [11,12] pro-
viding some analytical tools in order to render the problem more tractable and the
synchronization measurable.

2.2 Kuramoto model

The Kuramoto model of synchronization [13] describes the dynamics of a set of N
interacting phase oscillators θi with natural frequencies ωi and initial phases θ0

i .
The standalone evolution of the i-th oscillator is described by θi(t) = ωit + θ0

i .
Intuitively each oscillator i can be visualized as a point moving on a circle of radius
1 with angular speed ωi starting at angle θ0

i .
When the oscillators interact they tend to adapt themselves, by accelerating or

decelerating, with respect to the phases and the frequencies of the others. This
can be viewed as a process of collective synchronization which ends, under certain
conditions, in a total synchronous behavior. In the metaphor of the points moving
on the circle, when the system becomes synchronized the points move around in
sync, meaning that the phase differences remain constant. If the oscillators have
identical natural frequencies, they are also null.

By Kuramoto, the evolution of the interacting i-th oscillator is given by the
following equation:

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi), i = 1, · · · , N (1)

where K is the coupling strength depending on the type of interaction. A primary
basic condition to the possibility of synchronization is that the natural frequencies
of the N oscillators are equal or chosen from a lorentzian probability density given
by:

g(ω) =
γ

π[γ2 + (ω − ω0)2]
where γ is the width and ω0 is the median.

3

In his analysis [13], Kuramoto provided a measure of synchronization by defining
the complex order parameters r and ψ as:

reiψ =
1
N

N∑
j=1

eiθj (2)

where r is the magnitude of the centroid of the points and ψ indicates the average
phase. The radius r represents the phase-coherence of the population of the oscil-
lators and it is a convenient measure of the extent of synchronization in the limit
N → ∞ and t → ∞. If all oscillators are in sync, r = 1 when all the ωi’s are
the same while r ≈ 1 when the natural frequencies are not identical. On the other
hand, when all oscillators are completely out of phase with respect to each other
the value of r remains close to 0 most of the time.

In particular Kuramoto found that:

r =

0 K < Kc√

1− (Kc/K) K ≥ Kc

where Kc = 2γ. This means that the oscillators remain completely desynchronized
until the coupling strength K exceeds a critical value Kc. After that, the population
splits into a partially synchronized state consisting of two groups of oscillators: a
synchronized group that contributes to the order parameter r, and a desynchronized
group whose natural frequencies lie in the tails of the distribution g(ω) and are too
extreme to be entrained. With further increases in K, more and more oscillators
are recruited into the synchronized group, and r grows accordingly.

Usually, to approximate Equation (1) a suitable discretization is made by fixing
a small time interval dt to perform a numerical simulation. See Section 4 for a
discussion on the numerical methods used in our approach.

3 Automata model

In this section we show how oscillators can be modeled by timed automata and
how their interaction semantics can be defined, basing on a synchronization model,
without changing the structure of the standalone automata.

3.1 Timed automata

Timed Automata [2] are an established formalism for modeling and verifying real-
time systems. They allow strict quantitative real-time constraints to be expressed.
This characteristic will be used to model oscillators.

In this section we introduce the basic machinery on timed automata that we
need for our purposes. The idea of clock variables is central in the framework of
timed automata. A clock is a variable that takes values from the set R≥0. The clocks
measure time as it elapses. All the clocks of a given system advance at the same
rate: when increasing, they can be viewed as functions on time whose derivative is

4

equal to 1. Clock variables are ranged over by x, y, z, . . . and we use X ,X ′, . . . to
denote sets of clocks. A clock valuation over X is a function assigning a positive
natural number to every clock. The set of valuations of X , denoted by VX , is the
set of total functions from X to R≥0. Clock valuations are ranged over by ν, ν ′,
Given ν ∈ VX and δ ∈ R>0, we use ν + δ to denote the valuation that maps each
clock x ∈ X into ν(x) + δ.

Clock variables can be reset during the evolution of the system when certain
actions are performed or certain events occur. The reset consists in instantaneously
set the value of a clock to 0. Immediately after this operation the clock restarts to
measure time at the same rate as the others. The reset is useful to measure the
time elapsed since the action/event that reset the clock occurred. Given a set X of
clocks, a reset γ is a subset of X . The set of all resets of clocks in X is denoted
by ΓX and reset sets are ranged over by γ, γ′, . . . Given a valuation ν ∈ VX and a
reset γ, we let ν\γ be the valuation that assign the value 0 to every clock in γ and
assign ν(x) to every clock x ∈ X − γ.

The timed behavior of the system is expressed using constraints associated to the
edges of the automaton. Such constraints depend on the actual values of the clock
variables of the system. Given a set X of clocks, the set ΨX of clock constraints over
X are defined by the following grammar: ψ ::= true | false | x #c | x−y # c | ψ∧ψ
where x, y ∈ X , c ∈ N, and # ∈ {<,>,≤,≥,=}. A satisfaction relation |= is defined
such that ν |= ψ if the values of the clocks in ν satisfy the constraint ψ in the natural
interpretation.

Definition 3.1 A Timed Automaton T is a tuple (Q,Σ, E , q0,X , Inv), where: Q is
a finite set of locations, Σ is a finite alphabet of symbols, E is a finite set of edges,
q0 is the initial state, X is a finite set of clocks, and Inv is a function assigning
to every q ∈ Q an invariant, i.e. a clock constraint ψ such that for each clock
valuation ν ∈ VX and for each δ ∈ R>0, ν + δ |= ψ ⇒ ν |= ψ. Constraints having
this property are called past-closed.

Each edge e ∈ E is a tuple in Q×ΨX × ΓX ×Σ×Q. If e = (q, ψ, γ, a, q′) is an
edge, q is the source, q′ is the target, ψ is the constraint, a is the label, and γ is the
reset.

We use timed automata with invariants on the states, usually called timed safety
automata [9], that are the most common in the modeling and verification tools.
They incorporate a strong notion of fairness, due to the invariants, which will be
useful for the definition of oscillator timed automata in Section 3.2 and of the
interaction semantics in Section 3.3.

Figure 1(a) shows a sample timed automaton with three states 0, 1, 2. The set of
clocks is {x}, the alphabet is {a, b}, 0 is the initial state, and the invariant of state
0 is x < 4. There is an edge from state 0 to state 1 with clock constraint x < 4,
label a and reset set {x}.

The semantics of a timed automaton T = (Q,Σ, E , q0,X , Inv), is a labeled tran-
sition system S(T) whose states - ranged over by s, s′, . . . - are pairs (q, ν), where
q ∈ Q is a location of T , and ν ∈ VX is a clock valuation. The transition relation
is defined by the following rules:

5

0

1

2 3

4

y<=5

y<=5 y<=5

y<=5

y <5

y>2
c

{y}

c
y = 5

{y}

y=5

{y}
c

y=5

{y}c

{y}

c

y=5

y<2

{}
d

{y}
c

y>=0
and

y<=3

(b)

0 1

2

x < 4

x<=4

x<=4

{x}

x >=1

b

{}x = 4
a
{x}

x<4 a

(a)

Fig. 1. Two oscillator timed automata

T1
δ ∈ R>0 ν + δ |= Inv(q)

(q, ν) δ−→(q, ν + δ)
T2

(q, ψ, γ, a, q′) ∈ E , ν |= ψ

(q, ν) a−→(q′, ν\γ)

Rule T1 let δ time units to elapse, provided that the invariant of the current
location will be satisfied at the reached state. We call the transitions performed
using this rule δ-transitions. Rule T2 describe a transition, labelled by a, of the
automaton which is possible only if the current clock evaluation ν satisfies the clock
constraint of the edge. The effect of the transition is to go in the targe location q′

where the clocks in the reset set γ have been assigned to 0. We call the transitions
performed using this rule a-transitions.

The initial state of S(T) is (q0, ν0) where ν0 is the clock valuation assigning 0 to
all clocks.

A prefix of a possible behavior of the automaton in Figure 1(a) is rex = (0, [x =
0]) 3.4−→(0, [x = 3.4]) a−→(1, [x = 0]) 1.2−→(1, [x = 1.2]) b−→(2, [x = 1.2]) . . .

Let T = (Q,Σ, E , q0,X , Inv) be a timed automaton and let r = s0
l0−→ s1

l1−→· · ·
be an infinite derivation of S(T) where s0 = (q0, ν0) is an initial state.

- The time sequence t0 t1 t2 · · · of the times elapsed from state s0 to every state
si = (qi, νi) in r is defined as follows:
t−1 = 0

ti+1 = ti +

0 if li ∈ Σ

li otherwise

- The label sequence of r is the sequence of the transitions occurred during r, in-
cluding the elapsed times, from the initial state: (l0, t0)(l1, t0) · · ·

- The action sequence of r is the projection of the label sequence of r on the pairs
{(li, ti) | i ≥ 0, li ∈ Σ}

- If a ∈ Σ the a-sequence of r is the projection of the label sequence of r on the
pairs {(li, ti) | i ≥ 0, li = a}

The time sequence of rex is t−1 = 0, t0 = 3.4, t1 = 3.4, t2 = 4.6, t3 = 4.6, . . .

6

The label sequence is (3.4, 3.4)(a, 3.4)(1.2, 4.6)(b, 4.6) · · · The action sequence is
(a, 3.4)(b, 4.6) · · · The b-sequence is (b, 4.6) · · ·

3.2 Oscillator timed automata

The following definition characterizes the subclass of timed automata that are suit-
able to represent oscillators.

Definition 3.2 A timed automaton T is called oscillator timed automaton on a
distinguished action a ∈ Σ with period p ∈ R>0 if and only if all the following
conditions hold:

(i) for all ϑ ∈ R≥0 such that 0 ≤ ϑ < p there exists a prefix of an infinite

derivation r of S(T) of the form s0
l0−→ s1

l1−→· · · ln−1−→ sn
ln−→ sn+1 where all li

(i = 0, . . . , n− 1) are in R>0 (i.e. they are δ-transitions) and ln = a

(ii) every infinite derivation r of S(T) has a prefix of the form (i)

(iii) every infinite derivation r of S(T) has an infinite a-sequence of the form
(a, ϑ)(a, 1 · p+ ϑ)(a, 2 · p+ ϑ)(a, 3 · p+ ϑ) · · · for some delay ϑ

(iv) every finite derivation of S(T) is a prefix of an infinite derivation r of S(T)

This definition constrains an oscillator timed automaton to have an initial state
from which the oscillation can start with every delay (i), to always perform the
distinguished action as the first action (ii), to regularly repeat the distinguished
action every period from the first action on (iii), and to not have dying paths (iv),
that is paths ending in a state where time can not proceed.

Such a behavior is a convenient representation of an oscillator with its own initial
phase θ0 (0 ≤ θ0 < 2π), which we represent here as a time delay ϑ instead of an
angle, and its own frequency ω, which we represent here as a period p. They are
related as follows: ω = 2π

p and θ0 = 2π
p ϑ.

Figure 1(a) is an oscillator timed automaton on the distinguished action a with
period 4. In Figure 1(b) we show a slightly more complex automaton which is an
oscillator timed automaton on the distinguished action c with period 5. Note that
there is non-determinism on the choice of the initial non-δ-transition. Moreover,
there may be both an infinite self-loop on state 1 and a cycle between states 3
and 4 that eventually could end in the loop of state 1. In general, oscillator timed
automata can be very complex automata performing several actions and involving
cycles other than the one we focus on. The choice of the distinguished action
identifies the particular observation with which an external observer recognizes the
oscillating behavior.

3.3 Interacting oscillator timed automata

We want to describe the interaction among several oscillator timed automata. The
definition we give here is parametric with respect to the model of synchronization.
After the parametric definition we introduce the particular instance that uses the
Kuramoto model.

Let T1, . . . , TN be oscillator timed automata on distinguished actions a1, . . . , aN

7

with periods p1, . . . , pN . We suppose we are given, randomly determined or specif-
ically chosen, N initial delays ϑ1, . . . , ϑN .

At every instant of the interaction process we need to keep track of the current
position of each oscillator in its standalone cycle. To do this we define a simple
transformation: we add a new clock xi to every Ti and, to guarantee a correct
measure, we modify each Ti in such a way that xi is reset whenever the distin-
guished action ai is performed by Ti. This can be easily done by replacing each
edge (q, ψ, γ, ai, q′) of Ti by (q, ψ, γ ∪ {xi}, ai, q′).

The previous transformation ensures that, after a proper initialization, xi mea-
sures, at every point of the evolution of S(Ti), the time elapsed since the last
occurrence of ai. By the assumption that Ti is an oscillator timed automaton, we
can also state that pi minus the value of xi measures the remaining time to the next
occurrence of ai. The initialization process is described below.

3.3.1 Steps of activity
In order to describe the interaction semantics we need to define the steps of activity
of a single automaton.

Let T = (Q,Σ, E , q0,X , Inv) be a timed automaton. Given ∆ ∈ R>0 we define
a transition relation `−→

∆
between two states of S(T). We say that (q, ν) `−→

∆
(q′, ν ′)

if and only if there exists a finite derivation d of S(T) of the form (q, ν) =

(q0, ν0) l0−→(q1, ν1) l0−→· · · ln−1−→(qn, νn) = (q′, ν ′) such that:

• ` is the string l0l1 · · · ln−1

• ∆ is the sum of the times elapsed during d, i.e. ∆ =
∑n−1

i=0,li∈R>0 li

The time sequence of d is defined as the time sequence of r in Section 3.1,
starting from state (q, ν) and ending on state (q′, ν ′). The label sequence, action
sequence and a-sequence of d are defined in the same way. Note that in this case
the sequences are all finite. Moreover, given a step (q, ν) `−→

∆
(q′, ν ′), we define a

function A such that A(`) gives the action sequence of the derivation d associated
to the step.

The steps of activity allow us to group a sequence of transitions of S(T) into a
single transition `−→

∆
. We can decide the amount of time (∆) of our observation (`)

of the automaton behavior. Note that a step of activity is always possible only if
the automaton has not dying paths. Since we use this transition relation only with
oscillator timed automata, this is guaranteed by Definition 3.2:

Proposition 3.3 Let T be an oscillator timed automaton and let
(q0, ν0) l0−→· · · ln−→(q, ν) be a finite derivation of S(T). Then, given ∆ ∈ R>0, it is
always possible to perform a step of activity (q, ν) `−→

∆
(q′, ν ′).

Proof. By property (iv) of oscillator timed automata expressed in Definition 3.2.2

8

3.3.2 Initialization
The initialization step of the interaction must ensure that we start each transition
system S(Ti) in a state with complete information about the delay and, thus, about
the values of xi and the other clocks. To achieve this requirement we need to perform
a preliminary collective derivation of all S(Ti). Before describing the procedure we
need to introduce the following proposition.

Proposition 3.4 Let T = (Q,Σ, E , q0,X , Inv) be an oscillator timed automaton
on the distinguished action a with period p. For all delays 0 ≤ ϑ < p, there exists

an edge (q0, ψ, γ, a, q
′) ∈ E and a prefix d = s0

l0−→ s1
l1−→· · · ln−1−→ sn

ln−→ sn+1 of an
infinite derivation r of S(T) such that:

• all li, i = 0, . . . , n− 1, are in R>0,
∑n−1

i=1 li = ϑ and ln = a

• sn = (q0, ν0 + ϑ) and sn+1 = (q′, (ν0 + ϑ)/γ)

Proof. The properties follow easily by Definition 3.2 and by the semantics of a
timed automaton. 2

The previous Proposition implies that we can effectively determine a state sn+1

of S(T) from which the actual interaction of the automaton with the others can
start.

Let B1, B2, . . . , BK , K ≤ N , be a sequence of non-empty sets partitioning
{1, . . . , N} such that for all k, k = 1, 2, . . . ,K − 1, if i ∈ Bk and j ∈ Bk+1 then
ϑi < ϑj ; i.e. every Bk contains the indexes of the automata with equal values of
initial delay and the sequence arranges the indexes of automata in such a way that
their initial delays are in strict ascending order.

The preliminary collective derivation is as follows. It is straightforward, but
requires a lot of details: for the sake of brevity we only give a brief informal de-
scription.

We consider the initial states s1
0, s

2
0, . . . , s

N
0 of each S(Ti), where every Ti has been

transformed inserting the new clock and modifying the edges as specified above.
The process is a sequence of K steps. At the first step every S(Ti) performs zero

or more δ-transitions in order to reach a state of the form (q0, ν0 +ϑ) where ϑ is the
delay of the first group of oscillators whose indexes are in B1. Then, the automata in
this group perform a further single a-transition (where a is the distinguished action)
to reach a state of the form (q′, (ν0 +ϑ)/γ), as guaranteed by Proposition 3.4. From
now on every automaton of this group is considered “activated” and continues with
a sequence of transitions of the form `−→

∆
where ∆ is given by the times specified in

the subsequent steps.
At the i-th step the time that has to pass is ϑ = ϑk − ϑj , where j ∈ Bi−1 and

k ∈ Bi. The previously “activated” automata perform a transition `−→
ϑ

, while all

the others perform δ-transitions for a total of ϑ time units. Then, the automata
whose indexes are in Bi becomes “activated” performing their first a-transition (a
distinguished). Again, this possibility is guaranteed by Proposition 3.4.

At the end of this process we group the N reached states into a tuple
〈s1

0, s
2
0, . . . , s

N
0 〉 which is the initial configuration of the interaction semantics. Note

that, during the process, the early “activated” automata could have performed other

9

a-transitions, even distinguished ones. This does not influence the subsequent in-
teractions, because there have not been perturbations due to the synchronization
function. The important fact to remark is that the states of the starting tuple all
have pertinent values for the clocks xi and represent running oscillators with the
chosen delays and periods.

3.3.3 Interaction semantics
Now we can introduce the behavior of N oscillator timed automata running in
parallel and interacting using a generic discretized model, which is represented by
an interaction function I.

The main advantage of the interaction semantics is that it maintains the struc-
ture of the automata Ti’s, though it defines a perturbed behavior of them due to the
interaction. This is achieved by using a global time, which is the time measure of the
observer, together with N different relative times, which are the internal time mea-
sures of each oscillator timed automata involved. This means that if, according to
the interaction, Ti has to decelerate and Tj has to accelerate during the current slice
of global time dt, then Ti performs a step of activity whose duration is shorter than
dt, while Tj performs a longer one. The acceleration and deceleration is determined
by the interaction function I of the particular chosen model of synchronization. The
global observer detects perturbed behaviors because the timestamps of the actions
performed by each interacting Ti are re-scaled to the magnitude of the global time
slice dt.

Now we can introduce a transition relation, which we call progress relation,
between configurations, i.e. tuples 〈s1, s2, . . . , sN 〉 where each si is a state of S(Ti).
The rule defining the relation is the following:

∀i = 1, 2, . . . N ∆i = I(i, dt, s1, s2, . . . , sN) si
`i−→
∆i

s′i λi = SC(A(`i),∆i, dt)

〈s1, s2, . . . , sN 〉
λ1,λ2,...,λN

−−−−−−−→
dt

〈s′1, s′2, . . . , s′N 〉

where the re-scaling function SC is defined as follows:

SC((a0, t0)(a1, t1) · · · (ak, tk),∆, dt) = (a0,
t0
∆
· dt)(a1,

t1
∆
· dt) · · · (ak,

tk
∆
· dt)

The behavior of the interacting oscillator timed automata T1, T2, . . . , TN is then
defined as an infinite derivation:

ρ = 〈s1
0, s

2
0, . . . , s

N
0 〉

λ1
0,λ

2
0,...,λ

N
0−−−−−−−→

dt
〈s1

1, s
2
1, . . . , s

N
1 〉

λ1
1,λ

2
1,...,λ

N
1−−−−−−−→

dt
· · ·

To construct the trace associated to ρ, we need a function Ω that merges the
scaled action sequences λ1, λ2, . . . , λN of every step of progress into one action se-
quence in which the timestamps of each action are in ascending order. Moreover we
need a function T (τ, (a0, t0)(a1, t1) · · · (ak, tk)) = (a0, t0+τ)(a1, t1+τ) · · · (ak, tk+τ)
that adds a given amount of time τ to the timestamps of an action sequence.

Definition 3.5 Given N interacting oscillator timed automata T1, . . . , TN ,

10

the trace associated to a derivation ρ = 〈s1
0, s

2
0, . . . , s

N
0 〉

λ1
0,λ

2
0,...,λ

N
0−−−−−−−→

dt

〈s1
1, s

2
1, . . . , s

N
1 〉

λ1
1,λ

2
1,...,λ

N
1−−−−−−−→

dt
〈s1

2, s
2
2, . . . , s

N
2 〉

λ1
2,λ

2
2,...,λ

N
2−−−−−−−→

dt
· · · is the following action

sequence:

Ω(λ1
0, λ

2
0, . . . , λ

N
0) T (1 · dt,Ω(λ1

1, λ
2
1, . . . , λ

N
1)) T (2 · dt,Ω(λ1

2, λ
2
2, . . . , λ

N
2)) · · ·

The observable behaviors of the interacting oscillator timed automata are all possible
traces.

Note that traces contain all the actions performed by all the interacting au-
tomata. Moreover, the timestamp of each action is the one perceived by the global
observer, which can therefore detect the perturbations, due to interaction, on the
original standalone behaviors. Projecting a trace on distinguished actions only
allows to observe the synchronization process if, eventually, all the distinguished
actions occur at the same times.

3.3.4 Kuramoto interaction
In this section we instantiate the interaction semantics given above to the discretized
Kuramoto model of synchronization introduced in Section 2.2.

In the automata model we use periods instead of natural frequencies and initial
delays instead of initial phases. Since the Kuramoto model is defined in terms of
angular frequency and angular acceleration, we need to do a simple transformation
to express the acceleration K

N

∑N
j=1 sin(θj − θi) of the i-th oscillator in terms of

shorter or longer duration ∆i of the step of activity of Ti at each progress of length
dt. This is what the function I does, which is described in the following.

First, note that each configuration 〈s1, s2, . . . , sN 〉 is a snapshot of the situation
of each oscillator at a given point of time t. This situation can be depicted in a
circle of radius 1 associating to each automaton Ti, modulo 2πh for some h ∈ N,
the angle θi(t) = ui

pi
· 2π, where ui is the time elapsed since the last occurrence of

the distinguished action ai. By the transformation described at the beginning of
Section 3.3, we know that ui is precisely the value of the clock xi that can be derived
from si = (q, ν) as ν(xi). Note that this is true also in the starting configuration
(for which we consider t = 0), as we showed in Section 3.3.2.

Using this transformation we can calculate the quantity

αi =
K

N

N∑
j=1

sin(θj(t)− θi(t))

for each automaton Ti. Then, according to the discretization of the Kuramoto model
(see Section 2.2), during the time slice dt the i-th oscillator has to move forward,
in the circle representation, of an angle (ωi + αi)dt, where ωi = 2π

pi
is its natural

frequency. The time ∆i the automaton Ti has to consume to do this is such that
(ωi+αi)dt = ωi∆i. Thus, ∆i = dt+ αidt

ωi
, which is the value of I(i, dt, s1, s2, . . . , sN).

11

4 Logic for biological oscillators

In this section, we introduce a logic, Kuramoto Synchronization Logic (KSL), in
order to specify and detect collective synchronization properties in a population
of oscillator timed automata. We provide the syntax, the semantics and a model
checking algorithm for KSL. This logic has the same main temporal and logical
operators as Linear Temporal Logic (LTL). However, while LTL use a finite state
automaton, the Kripke structure, as a model, KSL use an uncountable state model.
In KSL, atomic propositions are given in terms of equalities or inequalities about
linear combinations of state variables. This form allows us to easily describe some
useful properties about synchronization. We add a special operator D., inspired
by the freeze quantification of [3], to store state variables in a certain step of the
simulation that could be compared with the state variables of a successive step.
Moreover, we use a bounded version of the until operator U adding to it a constraint
on the maximum time interval to be considered.

4.1 Discrete time Kuramoto model

Our system model is a discrete time version of the Kuramoto model (see Equa-
tion (1)) which can be represented by a tuple M = (Ω,Θ,D,D(∗),K, r), where
Ω = {ω1, · · · , ωn} is the vector of frequencies of the oscillator timed automata,
Θ = {θ1, · · · , θn} is the vector of the initial phases, D = { d1, · · · , dn} is the vector
of the remaining times to accomplish the distinguished actions, D(∗) are the set of
vectors of the stored remaining times during simulation, K ∈ R is the interaction
constant between the oscillators automata, and r is the phase coherence calculated
at current time as in Equation (2). We overload the definition of θi, di and r with
the functions θi : N → R, di : N → R and r : N → R that map the discrete time t
to the value of synchronization phases, remaining times and phase coherence.

The relations among synchronization phases and remaining times are given by
the following equations:

θi(t+ dt) = θi(t) + (ωi +
n∑
j=1

K

n
sin(θi(t)− θj(t))dt (3)

di(t+ dt) =
(2qπ − θi(t+ dt))

ωi
such that q = min(z ∈ N : 2zπ ≤ θi(t+ dt))

If we consider dt as the time unit in the discretization of time we can rewrite
Equation (3) as follows:

θi(t) = θi(0) +
t−1∑
l=0

ωi +
n∑
j=1

K

n
sin(θi(l)− θj(l))

 dt (4)

where θi(0) is the synchronization phase at the beginning of the simulation.
Although Equation (3) and (4) are very intuitive to understand and simple to be

calculated, they need a very small dt to provide a good approximation, increasing
dramatically the number of simulation steps. Consequently, in the simulator we

12

implemented, we used the Runge-Kutta 4th order method [7] to obtain the best
compromise between the approximation and the speed of computation.

4.2 Syntax and semantics of Kuramoto Synchronization Logic

The syntax of the Kuramoto Synchronization Logic is as follows:

φ ::= T | F | p | ¬φ | φ ∧ φ | Xφ | φ U≺m φ | D(h).φ

p ::=
∑
civi ∼ b | r ∼ b

where p is an atomic proposition, ci and b are real numbers, vi ∈ D ∪ D(∗) are
time remaining variables, ∼∈ {<,≤, >,≥,=}, and ≺∈ {<,≤}. A KSL formula has
atomic propositions, logical connectives ¬ ∧, temporal connectives X (next) U≺m
(bounded until), and a freeze connective D. As usual, we introduce shorthands by
defining the following derivative logical and temporal operators:

ψ ∨ φ

ψ → φ

ψ ↔ φ

2≺mψ

3≺mψ

⇔

⇔

⇔

⇔

⇔

¬(¬ψ ∧ ¬φ)

¬ψ ∨ φ

(ψ → φ) ∧ (φ→ ψ)

¬(F U≺m¬ψ)

T U≺mψ

or (∨)

implies (→)

equivalent (↔)

bounded always (2)

bounded eventually (3)

M, t |= T

M, t |=
∑

i ci · vi ∼ b

M, t |= r ∼ b

M, t |= ¬φ

M, t |= ψ ∧ φ

M, t |= X φ

M, t |= ψ U≺m φ

M, t |= D(h).φ

⇔

⇔

⇔

⇔

⇔

⇔

⇔

⇔

M, t 6|= F∑
i ci · M(vi) ∼ b

M(r) ∼ b

M, t 6|= φ

M, t |= ψ and M, t |= φ

M, t+ 1 |= φ

∃s2 : 0 ≤ s2 ≺ m such that M, t+ s2 |= φ and

M, t+ s1 |= ψ for s1 = 0, · · · , s2 − 1

M
[D(∗)

:=D(∗)∪{dh
1 (t),··· ,dh

n(t)}]
, t |= φ

Fig. 2. Semantics of Kuramoto Synchronization Logic

Figure 2 shows the semantics of the basic operators. Concerning the temporal
operators, Xφ is true if and only if φ is true at next simulation step, and ψ U≺m φ

is true if and only if ψ is continuously true - in subsequent steps - until φ becomes
true, which must happen within m (if ≺ is ≤) or m− 1 (if ≺ is <) steps.

Actually, the until operator of KSL can be expressed using the next operator.
This is because the operator is always bounded.

13

Proposition 4.1 Let ψ U≺m φ be a formula of KSL. Then, for all M, t:

M, t |= ψ U≤m φ ⇔ M, t |=
m∨
i=1

fm(ψ, φ)

and

M, t |= ψ U<m φ ⇔ M, t |=
m−1∨
i=1

fm(ψ, φ)

where

fm(ψ, φ) =

ψ ∧X φ if m = 1

ψ ∧X (fm−1(ψ, φ)) if m > 1

The previous result allows us to simplify the model checking algorithm, which
thus deals only with the next temporal operator (see Section 4.3).

Example 4.2 [Synchronization] Using the phase-coherence parameter r, it is pos-
sible to measure the collective behavior of a system of coupled oscillators. In par-
ticular Kuramoto [11] showed that if K is greater than a certain threshold Kc and
the oscillators have the same frequency, after a certain amount of time they become
perfectly synchronized, i.e. r = 1. The property that given a system of N oscillator
timed automata with same frequencies, “it becomes perfectly synchronized within
10s”, can be specified as:

φpsynch = 3≤10s r = 1
If the oscillators have slightly different frequencies and K is greater than a certain
threshold Kc, the phase-coherence parameter r becomes approximately 1. Chosen
an ε and given a system of N oscillator timed automata with slightly different
frequencies, we can specify the property that “within 10s, it becomes synchronized
with an approximation of ε and, after that, it remains synchronized for at least 5s”:

φεpsynch = 3≤10s 2≤5s r > 1− ε

Example 4.3 [Locked and drifted oscillators] After a system of oscillators starts to
synchronize, the population splits into a partially synchronized state consisting of
two groups of oscillators: a synchronized group, called locked - that behaves with a
frequency locked to the mean of the frequencies distribution - and a desynchronized
group, called drifted, whose natural frequencies are too extreme to be entrained.
In a set of locked oscillators no changes happen to the relative remaining times in
two subsequent simulation steps. The property that, given a system of N oscillator
timed automata, and given a set F = {i | 1 ≤ i ≤ N} of indexes “the oscillators in
F become eventually locked within 10s”, can be expressed as:

φFlocked = 3≤10s D
(1).X

∧
i,j∈F

(di − dj)− (d(1)
i − d

(1)
j) = 0

4.3 Model checking algorithm

Algorithm 1 shows a high level description of the recursive model checking function
mcKSL. It takes a KSL formula φ - where all the occurrences of the bounded until

14

function mcKSL(φ,M, t,diagTrace)
. Returns (true, �) or (false, a diagnostic trace)

select case
case φ = T

return (True, �)
end case
case isAtomic(φ)

return checkAtomicProp(φ,M, t,diagTrace)
end case
case φ = ¬φ1

return notDiag(mcKSL(φ1,M, t,diagTrace), φ1,M, t,diagTrace)
end case
case φ = φ1 ∧ φ2

return mergeAnd(
mcKSL(φ1,M, t,diagTrace),
mcKSL(φ2,M, t,diagTrace))

end case
case φ = X φ1

diagTrace← append(diagTrace, φ,M, t)
M← nextStep(M)
return mcKSL (φ1,M, t+ 1,diagTrace)

end case
case φ = D(h). φ1

diagTrace← append(diagTrace, φ,M, t)
M← addVariables(M, h)
return mcKSL (φ1,M, t,diagTrace)

end case
end select

end function

Algorithm 1. mcKSL Algorithm

operator have been translated as shown in Proposition 4.1 - a tupleM, a discretized
time (initially 0), and a dignostic trace (initially empty). The function evaluates
the formula φ over M and gives a counterexample (a diagnostic trace) whenever
the formula is false. The complexity of mcKSL is linear with respect to the length
of the formula, O(|φ|). The addVariables function allows to store the current state
variables di : i = 1, · · · , N in M, when a freeze connective is met during the
parsing. For each X connective in the formula, a nextStep function is called in
order to calculate the evolution of the system using the discrete time Kuramoto
model described in Equation (3). The functions notDiag and mergeAnd simply
manage the returning of a correct counterexample, given the results of the recursive
calls.

5 Reasoning on synchronization

In this section we briefly report an example of analysis performed by a prototype
implementation of our model checker. A demo of the simulator is available at [5].

15

Fig. 3. Initial conditions of the analysis

Fig. 4. Verification of properties after 10 seconds

We generated a system of 40 oscillators by choosing randomly the initial phase syn-
chronizations in the range (0, 2π) and frequencies using a Cauchy random variable
in the range (0, 1). Figure 3 shows the distribution of frequencies and of phases of
each oscillator. We set the coupling strength k = 1.0 and we check the φlockedF with
F = {1, · · · , 40} and φpsynch with ε = 0.3. Figure 4 shows the result of the model
checking after 10 seconds.

16

6 Conclusion and future work

In this paper we have defined a subclass of timed automata, oscillator timed au-
tomata, suitable to model biological oscillators. We have specified an interaction
semantics, parametric w.r.t. a model of synchronization, and we have instantiated
it to the Kuramoto model. The main advantage of the semantic definition is that it
does not require changing the structure of the automata modeling the standalone os-
cillators. We have also introduced a logic, Kuramoto Synchronization Logic (KSL),
in order to specify and detect collective synchronization properties in a population
of oscillators timed automata. A model checking algorithm has been presented and
an example of analysis has been showed.

The main future directions of our work are: 1) extend our logic with control
operators that allow us to infer how to influence a set of oscillators by adding
artificial oscillators, which we can control, in order to satisfy a desired property. 2)
Use hybrid automata, instead of timed automata, to model oscillators and to define
the interaction semantics. 3) Fully implement a model checker and simulator for
KSL. A prototype is available at [5]. 4) A long term objective: apply the model
checking of the extended logic, together with detection techniques already partially
available, to control fibrillation in cardiac cells networks (for more details of this
line of research see [4]).

Acknowledgement

Research partially supported by the Italian FIRB-MIUR LITBIO: Laboratory for
Interdisciplinary Technologies in Bioinformatics.

References

[1] Acebron, J., L. Bonilla, C. Pérez Vicente, F. Ritort and R. Spigler, The Kuramoto model: A simple
paradigm for synchronization phenomena, Rev Mod Phys 77 (2005), pp. 137–185.

[2] Alur, R. and D. L. Dill, A theory of timed automata, Theoretical Computer Science 126 (1994), pp. 183–
235.

[3] Alur, R. and T. A. Henzinger, A really temporal logic, Journal of the ACM 41 (2004), pp. 181–203.

[4] Bartocci, E., F. Corradini, R. Grosu, E. Merelli, S. Smolka and O. Riganelli, “StonyCam: a Formal
Framework for Modeling, Analyzing and Regulating Cardiac Myocytes,” Lecture Notes in Computer
Science, Springer-Verlag, 2008 pp. 493–502.

[5] Bartocci, E., F. Corradini, E. Merelli and L. Tesei, Prototype of the KSL model checker and simulator.
URL http://cosy.cs.unicam.it/kuramoto/

[6] Buck, J., Synchronous rhythmic flashing of fireflies II, The Quarterly Review of Biology 63 (1988),
pp. 265–289.

[7] Butcher, J. C., “Numerical methods for ordinary differential equations,” John Wiley and Sons, 2003.

[8] Dye, J., Ionic and synaptic mechanisms underlying a brainstem oscillator: An in vitro study of the
pacemaker nucleus of apteronotus, Journal of Comparative Physiology 168 (1991), pp. 521—-532.

[9] Henzinger, T. A., X. Nicollin, J. Sifakis and S. Yovine, Symbolic model checking for real-time systems,
Information and Computation 111 (1994), pp. 193–244.

[10] Kitano, H., “Foundations of Systems Biology,” MIT Press, 2002.

[11] Kuramoto, Y., Phase dynamics of weakly unstable periodic structures: Condensed matter and statistical
physics, Progress of theoretical physics 71 (1984), pp. 1182–1196.

17

http://cosy.cs.unicam.it/kuramoto/

[12] Kuramoto, Y., Collective synchronization of pulse-coupled oscillators and excitable units, Physica D
50 (1991), pp. 15–30.

[13] Kuramoto, Y., “Chemical Oscillations, Waves, and Turbulence,” Springer-Verlag, 2003.

[14] Mirollo, R. E. and S. H. Strogatz, Synchronization of pulse-coupled biological oscillators, SIAM Journal
of Applied Mathematics 50 (1990), pp. 1645–1662.

[15] Peskin, C. S., “Mathematical Aspects of Heart Physiology,” Courant Institute of Mathematical Sciences,
New York University, New York, 1975.

[16] Strogatz, S. H., “SYNC, the emerging science of spontaneous order,” Hyperion, 2004.

[17] Wang, R., L. Chen and K. Aihara, Synchronizing a multicellular system by external input: an artificial
control strategy, Bioinformatics 22 (2006), pp. 1775–1781.

[18] Winfree, A. T., Biological rhythms and the behavior of populations of coupled oscillators, Journal of
Theoretical Biology 16 (1967), pp. 15 – 42.

18

	Introduction
	Background
	Related work
	Kuramoto model

	Automata model
	Timed automata
	Oscillator timed automata
	Interacting oscillator timed automata

	Logic for biological oscillators
	Discrete time Kuramoto model
	Syntax and semantics of Kuramoto Synchronization Logic
	Model checking algorithm

	Reasoning on synchronization
	Conclusion and future work
	Acknowledgement
	References

