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1. Introduction

Spontaneous synchronisation happens frequently in nature: pacemaker
cells firing, electrons flowing, fireflies flashing, crickets chirping, planets or-
biting, neurons firing, menstrual periods synchronising, etc. Every night,
along the tidal rivers of Malaysia, thousands of fireflies congregate in the
mangroves and flash in unison, without any leader or cue from the environ-
ment [1]. In the solar system, gravitational synchrony can eject huge boulders
out of the asteroids belt and towards the Earth; the cataclysmic impact of
one such meteor is thought to have killed the dinosaurs. Even our bodies
are symphonies of rhythm kept alive by the relentless, coordinated firing of
thousands of pacemaker cells in our heart [2] or of billions of neurons in our
nervous system [3]. Just to mention some of these surprising phenomena
analysed by Strogatz in his exciting book [4].

All these phenomena have in common that at their base there are au-
tonomous entities that exhibits a cyclic behaviour: oscillators. Groups of
fireflies, planets, or pacemaker cells are collections of oscillators - entities
that cycle automatically, that repeat themselves over and over again at more
or less regular time intervals. Two or more oscillators are said to be coupled
if some physical or chemical process allows them to influence one another.
Interactions can be divided in two main types: smooth-coupled oscillators
interact continuously, while pulse-coupled oscillators interact only when an
individual firing is observed. Nature uses every available channel to make
the oscillators interact: fireflies communicate with light; planets tug on one
another with gravity; heart cells pass electrical currents back and forth. The
result of these interactions is often synchrony.

These phenomena has been intensively studied by biologists, physicists,
mathematicians, astronomers, engineers, sociologists, but beyond the avail-
ability of some mathematical models, many questions remain unanswered, as:
how exactly do coupled oscillators synchronise themselves, and under what
conditions? When is synchronisation impossible and when is it inevitable?
What other modes of organisation are to be expected when synchronisation
breaks down? Understanding a synchronised collective behaviour is essen-
tial in Systems Biology especially for developing methods to control the dy-
namics of systems and methods to design and modify systems for desired
properties [5].

The aim of this work is to provide a general formal framework in which
the behaviour of coupled oscillators can be modeled at different levels of
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abstraction. Based on this framework, we propose a logic and the relative
model checker that allows to prove synchronisation properties, with or with-
out a mathematical model of the biological system. If mathematical results
on the occurrence of synchronisation exist, as in Kuramoto [6] or in Pe-
skin [2] models, the model checker will allow to identify the necessary time
to reach the synchronisation state. Otherwise, if there are no mathematical
results, the model checker allows to analyse the reachability, in a given pop-
ulation of oscillators, of a synchronisation state or of states from which the
synchronisation might be achieved relaxing some constraints or giving more
information. In the latter case, the model and the model checker can also
be used to validate hypotheses on parameters derived by observing the real
biological system under study.

We believe that this model checking approach may be fundamental in
getting insights that are at the basis of understanding the dynamics of cou-
pled oscillators, and we wish to contribute in finding a way for transforming
pacemaker cells that are malfunctioning into healthy pacemaker cells, or for
controlling cancer nervous cells to turn them into normal nervous cells or to
induce the apoptosis in their cell-cycle.

The distributed synchronisation of biological systems is commonly mod-
eled using the theory of coupled oscillators proposed by, among others, Art
Winfree [7], Charles S. Peskin [2] and Yoshiki Kuramoto [6]. In this the-
ory, each member of the population is modeled as a phase oscillator running
independently at its own frequency. The synchronisation could be achieved
coupling each oscillator to all the others and making them to interact with
a certain strength. Whereas, the control is achieved either by introducing
artificial oscillators (or new impulses) or by changing the parameters of in-
dividual oscillators. This approach gives rise to an artificial control strategy
as it has been proposed by Wang et al. in [8].

The most successful attempt to model distributed synchronisation with
smooth interaction has been proposed by Yoshiki Kuramoto. The Kuramoto
model, based on Winfree’s ideas that mutual synchronisation is a coopera-
tive phenomenon - a temporal analogue of phase transition encountered in
statistical physics - is a beautiful and analytically tractable model. A wide
description of the Kuramoto model can be found in [9]. On the side of pulse-
coupled oscillators, Peskin proposed in [10] the first theory that explains
how the different pacemaker cells coordinate their activity so that the whole
sinoatrial node fires at the same time.

In this paper we proceed as follows: first we define a subclass of timed
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automata, called oscillator timed automata, suitable to model oscillators. Bi-
ological oscillators can be modeled as very simple automata that exhibit only
the oscillation behaviour, but also as detailed automata describing the inter-
nal states and events that specify, beyond the oscillation, internal behaviours,
possibly connected with the oscillation mechanism. Then, we introduce a
non-standard interaction semantics, parametric w.r.t. a model of synchroni-
sation, for describing the parallel composition of a population of oscillator
timed automata. To show the generality of the framework we instantiate it
to two different running examples of smooth and pulse interactions, i.e. the
Kuramoto model and the Peskin model.

Based on such a modelling framework, several analyses could be defined
to study different properties of oscillators. In this paper, we provide a logic,
called Biological Oscillator Synchronisation Logic (BOSL) by which it is pos-
sible to specify and, then, detect synchronisation properties of populations
of both smooth and pulse coupled oscillators. We give a model checking al-
gorithm for the logic and we show how to model interesting synchronisation
properties as BOSL formulae.

A peculiarity of the logic BOSL is that it is interpreted on states of sim-
ulation of the given model. The resulting model checking algorithm can be
described as run-time model checking, as it explores the state space simulat-
ing the interactions between the oscillator timed automata in a discretised
approximated scenario. Thus, we perform a model checking not in the tradi-
tional way proving whether a given formula is satisfied on all possible runs of
the model, but proving that a particular state - having certain characteristics
expressed by a formula - can be reached by simulating successive time steps
from an initial state.

We implemented a prototype model checker for BOSL, supporting the
Kuramoto model of interaction. As a case study, we use the modelling frame-
work and the logic BOSL for describing pacemaker cells in the heart and for
analysing their synchronisation properties.

The paper is organised as follows: Section 2 introduces related works
and the two models we use to show our approach: the Kuramoto model and
the Peskin model. Section 3 recalls timed automata, defines oscillator timed
automata, and specifies the interaction semantics. Section 4 introduces the
Biological Oscillator Synchronisation Logic (BOSL) and its model checking
algorithm presenting the case study at the end. Section 5 concludes outlining
some directions for future work. A preliminary version of this work appeared
in [11].
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2. Background

In this section we first present the literature, in the field of biological
oscillators, that inspired our work. Then we introduce the basic concepts
of phase oscillators and their mathematical model. Finally, we describe in
detail the two models of synchronisation we use as running examples: the
Kuramoto model for smooth-coupled oscillators and the Peskin model for
pulse-coupled oscillators.

2.1. Related work

During the last decades, several mathematical models have been pro-
posed to study the spontaneous synchronisation phenomena in a population
of biological coupled oscillators [4]. These models have been inspired by real
biological systems, ranging from the mutual synchronisation of cardiac and
circadian pacemaker cells to the rhythmically flashing of fireflies and wave
propagation in heart, brain, intestine and nervous system. In these systems,
mutual synchronisation could be performed both through smooth interac-
tions and through episodic impulses.

For the first case, in which the interactions between oscillators are smooth,
a first approach was proposed by Winfree [7] that introduced a model of
nearly identical, weakly coupled limit-cycle oscillators. Using numerical sim-
ulation, he discovered that in this loose-coupling hypothesis the system be-
haves incoherently, with each oscillator running at its natural frequency. He
also found that, as the coupling is increased, the unsynchronised incoherence
continues until a certain threshold, when a group of oscillators jump suddenly
into synchrony.

Starting from Winfree’s results and assumptions, Kuramoto began to
work with collective synchronisation phenomena and he proposed a refined
model [6, 12] providing some analytical tools in order to render the problem
more tractable and the synchronisation measurable.

The second case, in which a population of the so called pulse-coupled
oscillators communicate by sudden pulse-like interactions - i.e. a neuron that
fires - was first studied by Peskin [2] who proposed a model of the mutual
synchronisation of sinoatrial node pacemaker cells. He worked with identical
oscillators and he conjectured that for any arbitrary conditions, they would
all end up firing in unison. He proved this property for N = 2 oscillators
and later Mirollo and Strogatz [13] demonstrated that the conjecture holds
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for all N . Peskin also conjectured that synchronisation would occur even if
the oscillators were not quite identical, but that problem still remains open.

Our model is a candidate to treat both smooth and pulse oscillators. In
the following sections we introduce phase oscillators and we briefly report
the results of the mentioned research in order to introduce the concepts who
inspired us to construct the framework and the results on which we relied on
to define the logic for synchronisation detection.

2.2. Phase oscillators

Generally speaking, we aim to describe the dynamics of a set of N inter-
acting phase oscillators θi with natural frequencies ωi and initial phases θ0

i .
The standalone evolution of the i-th oscillator is described by θi(t) = ωit+θ

0
i .

Intuitively each oscillator i can be visualised as a point moving on a circle of
radius 1 with angular speed ωi starting at angle θ0

i .
When the oscillators interact they tend to adapt themselves, by accelerat-

ing or decelerating, with respect to the behaviour of the others. This can be
viewed as a process of collective synchronisation that ends up, under certain
conditions, in a total synchronous behaviour. In the metaphor of the points
moving on the circle, when the system becomes synchronised the points move
around in sync, meaning that the phase differences remain constant. Under
certain circumstances these differences are also null.

In case of smooth coupled oscillators the adapting process is continuous,
i.e. the speed θ̇i and the acceleration θ̈i are continuously updated depending
on the state of the other oscillators. In case of pulse coupled oscillators there
is a sudden discrete change in the state of an oscillator when it perceives
another oscillator emitting a particular signal, for instance firefly flashing or
pacemaker cell firing.

2.3. Kuramoto model

The Kuramoto model of synchronisation [14] describes the evolution of
a population of N smooth coupled phase oscillators. By Kuramoto, the
evolution of the interacting i-th oscillator is given by the following equation:

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi), i = 1, . . . , N (1)

where K is a parameter of the system representing the coupling strength,
which depends on the type of interaction. A primary basic condition to
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the possibility of synchronisation is that the natural frequencies of the N
oscillators are equal or chosen from a Lorentzian probability density given
by:

g(ω) =
γ

π[γ2 + (ω − ω0)2]

where γ is the width of the distribution and ω0 is the median.
In his analysis [14], Kuramoto provided a measure of synchronisation by

defining the complex order parameters r and ψ as:

reiψ =
1

N

N∑
j=1

eiθj (2)

where r is the magnitude of the centroid of the points and ψ indicates the
average phase. The radius r represents the phase-coherence of the population
of oscillators and it is a convenient measure of the extent of synchronisation
in the limit N →∞ and t→∞. If all oscillators are in sync, then r = 1 when
all the frequencies ωi are the same while r ≈ 1 when the natural frequencies
are not identical. On the other hand, when all oscillators are completely out
of phase with respect to each other the value of r remains close to 0 most of
the time.

In particular Kuramoto found that:

r =

 0 K < Kc√
1− (Kc/K) K ≥ Kc

where Kc = 2γ. This means that the oscillators remain completely desyn-
chronised if the value of the coupling strength K is below a critical threshold
Kc. Above this value, the population starts splitting into a partially synchro-
nised state consisting of two groups of oscillators: a synchronised group that
contributes to the order parameter r, and a desynchronised group whose nat-
ural frequencies lie in the tails of the distribution g(ω) and are too extreme
to be entrained. The higher is the value of K the more are the oscillators
recruited into the synchronised group, with r growing accordingly.

A special case is when all oscillators have the same natural frequency. In
this situation the interactions will take the population to a steady state in
which there are no more interactions. In the majority of cases the oscillators
are all perfectly synchronised. In other cases, for instance if the difference of
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phases are π - yielding a null interaction, they are locked, i.e. they move at
the same speed but there are differences of phase that remain constant over
time.

2.4. Peskin model

The heart beat originates in the sinoatrial node, a region of cells which
have the capability of depolarising spontaneously towards a threshold, firing,
and then recovering. Peskin in [10] proposed the first theory that explained
how the different cells coordinate their activity so that the whole sinoa-
trial node fires at the same frequency and (except for conduction delays) in
phase. His main hypothesis was that cells behave as a population of weakly
pulse-coupled oscillators, in which synchrony emerges as a consequence of
the interaction and in which the overall frequency is a property of the pop-
ulation of cells, rather than any single cell. He modeled the pacemaker cells
as a fully-connected network of N identical (same frequency) pulsed-coupled
oscillators, each characterised by a voltage-like state variable xi, subject to
the following dynamics:

ẋi = S0 − γxi, 0 ≤ xi ≤ 1, i = 1, . . . , N (3)

where S0 and γ, S0 > |γ|, γ 6= 0, are the intrinsic properties of the oscillator.
When xi = 1, the i-th oscillator “fires” and xi jumps back to zero. The
oscillators are assumed to interact by a simple form of pulse coupling: when
a given oscillator fires, it pulls all the other oscillators up by an amount ε,
or pulls them up to firing, whichever is less. That is:

xi(t) = 1⇒ xj(t
+) = min(1, xj(t) + ε) ∀j 6= i (4)

Peskin in [10] conjectured that cells would all end up firing in unison,
no matter how they started. He gave a proof for N = 2 oscillators; it was
later demonstrated by Mirollo and Strogatz in [15] that the conjecture holds
for all N . Peskin also conjectured that synchronisation would occur even
if the oscillators were not quite identical, but that problem remains open.
Peskin’s model has been used as a caricature of coupled neurons [16, 17, 18] by
including synaptic delays, refractory periods, inhibition, and local coupling.

3. Automata model

In this section we show how oscillators can be modeled by timed automata
and how their interaction semantics can be defined, based on a synchronisa-
tion model, without changing the structure of the standalone automata.
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3.1. Timed automata

Timed automata [19] are an established formalism for modelling and ver-
ifying real-time systems. They allow strict quantitative real-time constraints
to be expressed. This characteristic will be used to model oscillators.

In this section we introduce the basic machinery of timed automata that
we need for our purposes. The idea of clock variables is central in the frame-
work of timed automata. A clock is a variable that takes values from the set
R≥0. Clocks measure time as it elapses. All clocks of a given system advance
at the same rate: when increasing, they can be viewed as functions of time
whose derivative is equal to 1. Clock variables are ranged over by x, y, z, . . .
and we use X ,X ′, . . . to denote sets of clocks. A clock valuation over X is
a function assigning a non-negative real number to every clock. The set of
valuations of X , denoted by VX , is the set of total functions from X to R≥0.
Clock valuations are ranged over by ν, ν ′, . . .. Given ν ∈ VX and δ ∈ R>0, we
use ν + δ to denote the valuation that maps each clock x ∈ X into ν(x) + δ.

Clock variables can be reset during the evolution of the system when
certain actions are performed or certain events occur. The reset consists in
instantaneously set the value of a clock to 0. Immediately after this operation
the clock restarts to measure time at the same rate as the others. The reset is
useful to measure the time elapsed since the last action/event that reset the
clock. Given a set X of clocks, a reset γ is a subset of X . The set of all resets
of clocks in X is denoted by ΓX and reset sets are ranged over by γ, γ′, . . .
Given a valuation ν ∈ VX and a reset γ, we let ν\γ be the valuation that
assign the value 0 to every clock in γ and assign ν(x) to every clock x ∈ X\γ.

The timed behaviour of the system is expressed using constraints associ-
ated to the edges of the automaton. Such constraints depend on the actual
values of the clock variables of the system. Given a set X of clocks, the
set ΨX of clock constraints over X are defined by the following grammar:
ψ ::= true | false | x #c | x − y # c | ψ ∧ ψ where x, y ∈ X , c ∈ N,
and # ∈ {<,>,≤,≥,=}. A satisfaction relation |= is defined such that
ν |= ψ if the values of the clocks in ν satisfy the constraint ψ in the natural
interpretation.

Definition 3.1. A timed automaton T is a tuple (Q,Σ, E , q0,X , Inv), where:
Q is a finite set of locations, Σ is a finite alphabet of symbols, E is a finite set
of edges, q0 is the initial state, X is a finite set of clocks, and Inv is a function
assigning to every q ∈ Q an invariant, i.e. a clock constraint ψ such that for
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Figure 1: Two similar oscillator timed automata on distinguished action a with the same
period 4 but different initial delays and different behaviours on action b.

each clock valuation ν ∈ VX and for each δ ∈ R>0, ν + δ |= ψ ⇒ ν |= ψ.
Constraints having this property are called past-closed.

Each edge e ∈ E is a tuple in Q×ΨX ×ΓX ×Σ×Q. If e = (q, ψ, γ, a, q′)
is an edge, q is the source, q′ is the target, ψ is the constraint, a is the label,
and γ is the reset.

We use timed automata with invariants on the states, a variant of the
original model introduced in [20], that are the most common in the modelling
and verification tools. They incorporate a notion of urgency, due to the
invariants, which will be useful for the definition of oscillator timed automata
in Section 3.2 and of the interaction semantics in Section 3.3.

Figure 1(a) shows a timed automaton with three states 0, 1, 2. The set of
clocks is {x}, the alphabet is {a, b}, 0 is the initial state, and the invariant
of state 0 is x <= 2. There is an edge from state 0 to state 1 with clock
constraint x = 2, label a and reset set {x}.

The semantics of a timed automaton T = (Q,Σ, E , q0,X , Inv), is a la-
belled transition system S(T ) whose states - ranged over by s, s′, . . . - are
pairs (q, ν), where q ∈ Q is a location of T , and ν ∈ VX is a clock valuation.
The transition relation is defined by the following rules:

T1
δ ∈ R>0 ν + δ |= Inv(q)

(q, ν)
δ−→(q, ν + δ)

T2
(q, ψ, γ, a, q′) ∈ E , ν |= ψ

(q, ν)
a−→(q′, ν\γ)

Rule T1 lets δ time units to elapse, provided that the invariant of the
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current location will be satisfied at the reached state. We call the transi-
tions performed using this rule δ-transitions. Rule T2 describes a transition,
labelled by a, of the automaton which is possible only if the current clock
evaluation ν satisfies the clock constraint of the edge. The effect of the tran-
sition is to go in the target location q′ where the clocks in the reset set γ
have been assigned to 0. We call the transitions performed using this rule
a-transitions.

The initial state of S(T ) is (q0, ν0) where ν0 is the clock valuation as-
signing 0 to all clocks. A prefix of a possible behaviour of the automaton

in Figure 1(a) is rex = (0, [x = 0])
2−→(0, [x = 2])

a−→(1, [x = 0])
1.2−→(1, [x =

1.2])
b−→(2, [x = 1.2]) . . .

Let T = (Q,Σ, E , q0,X , Inv) be a timed automaton and let r be an infinite

derivation of S(T ), r = s0
l0−→ s1

l1−→· · · where s0 = (q0, ν0) is an initial state.

- The time sequence t0 t1 t2 · · · of the times elapsed from state s0 to every
state si = (qi, νi) in r is defined as follows1:

t−1 = 0

ti+1 = ti +

 0 if li ∈ Σ

li otherwise

We say that r is divergent if for every M ∈ R≥0 there exists i ∈ N such
that ti > M

- The label sequence of r is the sequence of the transitions occurred during
r, including the elapsed times from the beginning of the derivation, i.e.,
from the initial state: (l0, t0)(l1, t1) · · ·

- The action sequence of r is the projection of the label sequence of r on
the pairs {(li, ti) | i ≥ 0, li ∈ Σ}

- If a ∈ Σ the a-sequence of r is the projection of the label sequence of r
on the pairs {(li, ti) | i ≥ 0, li = a}

The time sequence of rex is t−1 = 0, t0 = 2, t1 = 2, t2 = 3.2, t3 = 3.2, . . .
The label sequence is (2, 2)(a, 2)(1.2, 3.2)(b, 3.2) · · · The action sequence is
(a, 2)(b, 3.2) · · · The b-sequence is (b, 3.2) · · ·

1Index 0 is associated to the first time t0 of the first move of the transition system. So
the initial time 0 is indexed by −1.
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3.2. Oscillator timed automata
We want to identify a subclass of timed automata that are suitable to

represent phase oscillators. In the following we discuss the main issues, both
technical and conceptual, that we considered in order to characterise oscilla-
tor timed automata and then we formalise them in Definition 3.2.

First, it is more convenient, in a timed setting, to represent the parameters
of the oscillators with time values instead of angular values such as angular
speed or initial phase. Thus, we represent the frequency ω by a period of
oscillation p and the initial phase θ0 (0 ≤ θ0 < 2π) by an initial delay ϑ0

(0 ≤ ϑ0 < p). They are simply related as follows: ω = 2π
p

and θ0 = 2π
p
ϑ0.

From the point of view of the modelling formalism, we decided to use
the full power of timed automata to allow the specification of biological os-
cillators at different levels of abstraction. This means that, on one hand,
an oscillator can be described with a very simple automaton that represents
the mere oscillation (with the frequency and the initial phase) without other
details. On the other hand, using locations, actions and non-determinism of
timed automata one can specify, using the available biological information,
a more complex system that exhibits an oscillating behaviour among other
“internal” behaviours and states. An example of this approach is given in
Section 4.5 where we describe pacemaker cells with information about the
various phases they go through in their cycle. Having a detailed model of
an oscillator allows to perform analyses and verifications depending not only
on the “external” observation of the oscillation, but also on the “internal”
aspects of the oscillator.

The degree of freedom in modelling, though, must be balanced with a
strict condition on what really defines an oscillator, i.e. the fact that a cyclic
behaviour repeats regularly over time. To fix this, we should identify an ob-
servable event, in the run of a timed automaton, that represents this regular
cycle. The natural choice is a certain distinguished action that must repeat
regularly on every trace of the automaton, no matter which locations are
traversed and which other actions are performed. This imposes a certain
degree of determinism on the automaton. Clock constraints with equalities
in timed automata allow us to be “punctual”, i.e. to identify precise points
in time in which an event have to occur. However, as we discuss below, this
punctuality could be relaxed in order to get a more flexible framework.

Another aspect to be considered is the initial condition, i.e. the initial
phase of the oscillator. This parameter is sometimes crucial for the possibility
of the oscillator to synchronise when it is inserted in a population of coupled
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oscillators2. Thus, the initial phase must be specified properly and precisely
if we want to identify a correct initial state for the automaton. Also in this
case we impose determinism and punctuality, requiring the automaton to fire
its first distinguished action precisely at the given initial delay. This has the
advantage to simplify the definition of the initial state of interaction, as we
discuss in Section 3.3.2.

Definition 3.2. A timed automaton T is called oscillator timed automaton
on a distinguished action a ∈ Σ with period p ∈ R>0 and initial delay ϑ,
0 ≤ ϑ < p, if and only if the two following conditions hold:

1. for each infinite divergent derivation r of S(T ) the a-sequence of r is an
infinite sequence of the form (a, ϑ)(a, 1 ·p+ϑ)(a, 2 ·p+ϑ)(a, 3 ·p+ϑ) · · ·

2. every finite derivation of S(T ) is a prefix of an infinite divergent deriva-
tion r of S(T )

This definition identifies as oscillator timed automata those that start the
oscillation performing their distinguished action a for the first time exactly
at their given initial delay ϑ and then regularly repeat the distinguished ac-
tion every period p from the first action on (condition (1)). Note that the
distinguished action a is required not to occur between any two occurrences
separated by the period p, otherwise the a-sequence would contain that oc-
currence of a, which would occur before the next period and would falsify
the condition.

Condition (2) imposes that oscillator timed automata have no dying
paths, i.e. paths ending in a state where time can not proceed. This is
equivalent to consider only the divergent behaviours of the automata, i.e.
we neglect, as usually done in the context of timed automata, those infinite
derivations (called Zeno derivations) in the transition system S(T ) of an au-
tomaton T in which time converges due to a choice of a convergent succession
of delays δ in R≥0. This condition is needed for technical reasons that will
become more clear in Section 3.3.1. Informally, we want to have the possibil-
ity to make an oscillator timed automaton proceed at fixed small time steps.
For doing this we must be guaranteed that every piece of derivation we make

2For instance, if two smooth-coupled oscillators interacting with the Kuramoto model
have initial phases that differ of π their interaction will always be null, thus they will not
synchronise.
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Figure 2: A more complex oscillator timed automaton.

takes us to a state in which the derivation can continue, no matter how the
non-determinism was resolved.

Figure 1(a) shows an oscillator timed automaton on the distinguished ac-
tion a with period 4 and initial delay 2, while the automaton in Figure 1(b)
has the same distinguished action and the same period, but initial delay 3.
Note that the two automata can represent two oscillators with the same
frequency and different initial phase. Note also that the non-oscillating
behaviours of the two automata are different in the sense that the non-
distinguished action b can occur, between any two occurrences of a, with
different time constraints in the two automata.

In Figure 2 we show a slightly more complex automaton which is an
oscillator timed automaton on the distinguished action c with period 5 and
initial delay 3. Note that there is non-determinism on the choice of the initial
c-transition. Moreover, there may be both an infinite self-loop on state 1 and
a cycle between states 3 and 4 that eventually could end in the loop of state
1. In general, oscillator timed automata can be very complex automata
performing several actions and involving cycles other than the one we focus
on. As we mentioned above, the choice of the distinguished action identifies
the particular observation with which an external observer recognises the
oscillating behaviour.
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We want to remark that our definition of oscillator timed automata could
be too strong in situations in which a high punctuality of time constraints is
not required. In these cases, weaker definitions - for instance using less strict
acceptance conditions for the time trajectories of the automata as in [21] -
can be used without changing significantly the interaction semantics and the
model checking approach presented in Section 4.

Finally, an important issue about Definition 3.2 is the possibility to auto-
matically check if a given timed automaton is an oscillator timed automaton
on a certain distinguished action a with a certain period p and initial delay
ϑ. Concerning condition (1), one can use classical model checking on timed
automata to assure that the initial condition holds and that the oscillation
occurs forever at precise times. For the former it is sufficient to express a
reachability requirement on all paths, while the latter can be expressed as
a classical invariance property requiring that whenever the distinguished ac-
tion a occurs then, on all possible paths, after exactly p time units another
a occurs, and in the meantime it does not occur. As the properties we have
to check depend on the actions labelling the edges of the automaton, in par-
ticular the distinguished action a, a suitable temporal logic to express these
requirements is ATCTL [22]. An ATCTL formula can be mapped to a TCTL
formula [20], which can be verified with the model checking tool KRONOS
[23].

For what concerns condition (2), in [20] it is given a fix-point algorithm
to compute if a given timed automaton does not contain Zeno states, i.e.
states from which time can not advance towards divergence. This algorithm
is implemented within the KRONOS tool and, thus, also this condition can
be checked.

3.3. Interacting oscillator timed automata

Standard synchronisation between timed automata, either classical col-
lective action-based synchronisation [19, 23] or point-to-point channel com-
munication in a network of timed automata [24, 25], is not suitable for rep-
resenting the synchronisation that takes place among biological oscillators.
The kind of synchronisation we deal with is an emerging behaviour and the
means of communication can not be easily represented by channels or hand-
shakes because they are actually perturbations of the normal behaviour of
the single oscillator due to physical or chemical interactions with a dynamic
environment.
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In this section we propose a way to describe the interaction among sev-
eral oscillator timed automata in order to possibly obtain synchronisation
as emerging behaviour. The semantics of interaction we give here is non-
standard and is parametric with respect to the model of synchronisation.
After the parametric definition we introduce two particular instances: one
based on smooth interaction using the Kuramoto model and another based
on pulse interaction using the Peskin model.

Suppose we are given N oscillator timed automata T1, . . . , TN on dis-
tinguished actions a1, a2, . . . , aN with periods p1, . . . , pN and initial delays
ϑ1, . . . , ϑN .

At every instant of the interaction process we need to keep track of the
current position of each oscillator in its standalone cycle. To do this we define
a simple transformation: we add a new clock xi to every Ti and, to guarantee
a correct measure, we modify each Ti in such a way that xi is reset whenever
the distinguished action ai is performed by Ti. This can be easily done by
replacing each edge (q, ψ, γ, ai, q

′) of Ti by (q, ψ, γ ∪ {xi}, ai, q′). Note that
xi needs to be added because a clock functioning in this way may not exist
in Ti.

The previous transformation ensures that, after a proper initialisation,
xi measures, at every point of the evolution of S(Ti), the time elapsed since
the last occurrence of ai. By the assumption that Ti is an oscillator timed
automaton, we can also state that pi minus the value of xi measures the
remaining time to the next occurrence of ai. The initialisation process is
described in Section 3.3.2.

3.3.1. Steps of activity

In order to describe the interaction semantics we need to define the step
of activity of a single automaton. This step is intended as a certain small
time interval of simulation of an oscillator dynamics. The length of the step
will be determined by the discretisation of the model, as we describe later,
and by the interaction with other oscillators in the population under analysis,
following the interaction semantics assigned for the given type of oscillators.

Let T = (Q,Σ, E , q0,X , Inv) be a timed automaton. Given ∆ ∈ R>0

we define a transition relation
`−→
∆

between two states of S(T ). We say that

(q, ν)
`−→
∆

(q′, ν ′) if and only if there exists a finite derivation d of S(T ) of the

form (q, ν) = (q0, ν0)
l0−→(q1, ν1)

l1−→· · · ln−1−→(qn, νn) = (q′, ν ′) such that:
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• ` is the string l0l1 · · · ln−1

• ∆ is the sum of the times elapsed during d, i.e. ∆ =
∑n−1

i=0,li∈R>0 li

The time sequence of d is defined as the time sequence of r in Section 3.1,
starting from state (q, ν) and ending on state (q′, ν ′). However, here the
time count starts at zero from the beginning of the considered derivation,
thus the times tj in the time sequence are all in the interval [0,∆]. The
label sequence, action sequence and a-sequence of d are defined in the same
way. Note that in this case the sequences are all finite. Moreover, given a

step (q, ν)
`−→
∆

(q′, ν ′), we define a function A such that A(`) gives the action

sequence of the derivation d associated to the step.
The steps of activity allow us to group a sequence of transitions of S(T )

into a single transition
`−→
∆

. We can decide the amount of time (∆) of our

observation (`) of the automaton behaviour. Note that a step of activity is
always possible only if the automaton has not dying paths. Since we use this
transition relation only with oscillator timed automata, this is guaranteed by
Definition 3.2.

Proposition 3.3. Let T be an oscillator timed automaton and let

(q0, ν0)
l0−→· · · ln−→(q, ν)

be a (possibly empty) finite derivation of S(T ). Then, given ∆ ∈ R>0, it is

always possible to perform a step of activity (q, ν)
`−→
∆

(q′, ν ′).

Proof. The thesis follows directly from Definition 3.2.

Consider the automaton shown in Figure 1(a). A possible step of activity

of length 3 from the initial state is (0, [x = 0])
2 a 1−−→

3
(1, [x = 1]) corresponding

to the derivation (0, [x = 0])
2−→(0, [x = 2])

a−→(1, [x = 0])
1−→(1, [x = 1])

whose action sequence is (a, 2).
Consider the automaton shown in Figure 1(b). A possible step of activity

of length 3 from the initial state is (0, [x = 0])
3 a−→
3

(1, [x = 0]) corresponding

to the derivation (0, [x = 0])
3−→(0, [x = 3])

a−→(1, [x = 0]) whose action
sequence is (a, 3).
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3.3.2. Initialisation

The initialisation step of the interaction must ensure that we start each
transition system S(Ti) in a state with complete information about the delay
and, thus, about the values of xi and the other clocks. To achieve this
requirement we need to perform a preliminary collective derivation of all
S(Ti).

Proposition 3.4. Given N oscillator timed automata Ti, i = 1, . . . , N , on
distinguished actions ai, with periods pi and initial delays ϑi, we can ef-
fectively determine, starting from the initial states of every S(Ti), a tuple
〈s1

0, s
2
0, . . . , s

N
0 〉 such that for all i:

• si0 ∈ S(Ti)

• Ti fired at least once the distinguished action ai exactly at the assigned
initial delay ϑi

• the time elapsed during the derivation from the initial states of S(Ti)
to si0 is exactly max({ϑ1, . . . , ϑN})

Proof. Let ϑmax = max({ϑ1, . . . , ϑN}). By Proposition 3.3 every automaton
Ti such that ϑi < ϑmax can perform, from its initial state, a step of activity

of length ϑmax: si0
`−−−→

ϑmax

si0. By the properties stated in Definition 3.2, state

si0 satisfies all the conditions of the thesis.
For automata Tj whose initial delays are equal to ϑmax we can perform

the same step as above and possibly have to add a final transition
aj−→ sj0 if

the reached state did not result from the firing of the distinguished action.
Again, the possibility to add this transition is guaranteed by the conditions
in Definition 3.2.

Note that, during the procedure described in the proof, the automata
whose initial delays were less than the maximum initial delay could have
performed other a-transitions, even distinguished ones. This does not influ-
ence the subsequent interactions, because there have not been perturbations
due to the synchronisation function. The important fact to remark is that
the states of the starting tuple all have pertinent values for the clocks xi and
represent running oscillators with the chosen delays and periods.

Note also that the tuple 〈s1
0, s

2
0, . . . , s

N
0 〉 is not uniquely defined due to

possible non-determinism in the performed steps of activity.
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Consider the two automata in Figure 1 numbered 1 (a) and 2 (b). Using
the procedure suggested in the proof, a candidate tuple for initiating their
interaction is 〈(1, [x = 1, x1 = 1]), (1, [x = 0, x2 = 0])〉.

3.3.3. Interaction semantics

Now we can introduce the behaviour of N oscillator timed automata
running in parallel and interacting using a generic synchronisation model,
which is represented by an interaction function I.

Our objective is to approximate the continuous dynamics of the interact-
ing automata T1, T2, . . . , TN without changing the structure of the standalone
automata Ti’s. Other approaches [26, 27, 28] exist to approximate dynamic
behaviours typical of hybrid automata [29], or in general of hybrid systems,
by using timed automata. However, they focus on developing techniques for
performing classical (approximated) verifications on such systems, for which
even the simplest verification problems are often undecidable. In this paper,
instead, we define a non-standard semantics for the parallel composition of
timed automata in order to describe a collective process of “emerging syn-
chronisation” of them.

First, to approximate the continuous dynamics of the interaction between
the oscillators - for instance the Kuramoto interaction described by Equa-
tion (1) or the Peskin interaction described by Equation (4) - we introduce
in our model a concept of discretisation. In more detail, we consider a small
fixed time interval δt as the pace at which all the population of oscillator
timed automata evolves over time. The value of δt has to be considered a
global parameter depending on the precision required by the application. In-
teractions take place at every interval of length δt. Note that this does not
mean that we use a discrete time domain: the underlying time domain is still
R≥0, but the interactions are not continuous, occurring every δt time units.

Then, at each step, we use steps of activities defined in Section 3.3.1 to
make each standalone automaton Ti advance of an amount of time ∆i which
is different, in general, from the global δt pace. More precisely, it is the model
of synchronisation, by means of the interaction function I, that decides the
length of ∆i. In this way we can obtain a perturbed behaviour of the global
system, T1, T2, . . . , TN in parallel, due to the interaction. This is achieved by
considering the time of the external observer (δt) as the global time, while the
N different ∆i’s are considered as relative times, i.e. valid only internally for
each oscillator timed automaton. If, according to the interaction, Ti has to
decelerate and Tj has to accelerate during the current slice of global time δt,
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then Ti performs a step of activity whose duration ∆i is shorter than δt, while
Tj performs a longer ∆j. The global observer detects perturbed behaviours
because the timestamps of the actions performed by each interacting Ti are
rescaled to the magnitude of the global time slice δt and merged together to
form a unique timed trace.

Let us formalise this non-standard semantics of parallel composition.
First, we introduce a transition relation, which we call progress relation,
between configurations, i.e. tuples 〈s1, s2, . . . , sN〉 where each si is a state of
S(Ti). The rule defining the relation is the following:

∀i = 1, . . . , N ∆i = I(i, δt, s1, s2, . . . , sN) si
`i−→
∆i

s′i λi = SC(A(`i),∆i, δt)

〈s1, s2, . . . , sN〉
λ1,λ2,...,λN

−−−−−−→
δt

〈s′1, s′2, . . . , s′N〉

where the rescaling function SC is defined as follows:

SC((a0, t0)(a1, t1) · · · (ak, tk),∆, δt) = (a0,
t0
∆
· δt)(a1,

t1
∆
· δt) · · · (ak,

tk
∆
· δt)

Note that, in the rule above, the rescaling function is called with the
proper current time slice ∆i of each automaton i. Thus, every action time tj
in the given action sequence - which is in the interval [0,∆i] (see Section 3.3.1)
- is rescaled w.r.t. the ratio δt/∆i, which is the one to be considered for
automaton i.

Moreover, note that the resulting state s′i of each step of activity si
`i−→
∆i

s′i

is determined non-deterministically by the choices made in the subderivation
represented by `i. In particular, there may be more than one ending state s′i
if the automaton is non-deterministic. However, Proposition 3.3 assures that
from each possible s′i the computation can continue and diverge.

A behaviour of the interacting oscillator timed automata T1, T2, . . . , TN
is defined as an infinite derivation:

ρ = 〈s1
0, s

2
0, . . . , s

N
0 〉

λ1
0,λ

2
0,...,λ

N
0−−−−−−→

δt
〈s1

1, s
2
1, . . . , s

N
1 〉

λ1
1,λ

2
1,...,λ

N
1−−−−−−→

δt
· · ·

Then, to construct the trace associated to ρ, we need a function Ω that
merges the scaled action sequences λ1, λ2, . . . , λN of every step of progress
into one action sequence in which the timestamps of each action are in as-
cending order. Moreover, in order to compute incrementally the timestamps
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from the beginning of the trace, we need a function

T (τ, (a0, t0)(a1, t1) · · · (ak, tk)) = (a0, t0 + τ)(a1, t1 + τ) · · · (ak, tk + τ)

that adds a given amount of time τ to the timestamps of an action sequence.

Definition 3.5. Given N interacting oscillator timed automata T1, . . . , TN ,
the trace associated to a derivation

ρ = 〈s1
0, s

2
0, . . . , s

N
0 〉

λ1
0,λ

2
0,...,λ

N
0−−−−−−→

δt
〈s1

1, s
2
1, . . . , s

N
1 〉

λ1
1,λ

2
1,...,λ

N
1−−−−−−→

δt
· · ·

is the following action sequence:

Ω(λ1
0, λ

2
0, . . . , λ

N
0 ) T (1 · δt,Ω(λ1

1, λ
2
1, . . . , λ

N
1 )) T (2 · δt,Ω(λ1

2, λ
2
2, . . . , λ

N
2 )) · · ·

The observable behaviours of the interacting oscillator timed automata
are all possible traces.

Note that traces contain all the actions performed by all the interacting
automata. Moreover, the timestamp of each action is the one perceived by
the global observer, which can therefore detect the perturbations, due to
interaction, on the original standalone behaviours. Projecting a trace on
distinguished actions only allows to observe the synchronisation process if,
eventually, all the distinguished actions occur at the same times.

Consider again the two automata in Figure 1 and the initial tuple calcu-
lated in the previous section: 〈(1, [x = 1, x1 = 1]), (1, [x = 0, x2 = 0])〉.

Suppose that δt = 0.5, I(1, 0.5, (1, [x = 1, x1 = 1]), (1, [x = 0, x2 = 0])) =
0.6 and I(2, 0.5, (1, [x = 1, x1 = 1]), (1, [x = 0, x2 = 0])) = 0.35.

Then, according to the interaction function I, T1 has to accelerate per-
forming a step of activity of length 0.6 instead of the “real” length δt = 0.5.
On the contrary, T2 has to decelerate performing a step of activity of length
0.35. Applying the rule we have to find the successor states after the steps

of activity. Two possibilities are (1, [x = 1, x1 = 1])
0.4 b 0.2−−−−→

0.6
(2, [x =

1.6, x1 = 1.6]) and (1, [x = 0, x2 = 0])
0.2 0.15−−−−→

0.35
(1, [x = 0.35, x2 = 0.35])

whose action sequences are (b, 0.4) and empty, respectively. The rescaling
of (b, 0.4) has to be done according to the ratio δt/∆1, i.e. 0.5/0.6. Thus,
λ1 = (b, 0.4 · 0.5/0.6) = (b, 0.33), i.e. the external observer see the timestamp
0.33 associated to b, different from the “internal” relative timestamp 0.4 that
the standalone T1 would exhibit.
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3.3.4. Kuramoto interaction

In this section we instantiate the interaction semantics given above to the
Kuramoto model of synchronisation introduced in Section 2.3.

In the automata model we use periods instead of natural frequencies and
initial delays instead of initial phases. Since the Kuramoto model is defined
in terms of angular frequency and angular acceleration, we need to do a
simple transformation to express the acceleration K

N

∑N
j=1 sin(θj − θi) of the

i-th oscillator in terms of shorter or longer duration ∆i of the step of activity
of Ti at each progress of length δt. This is what the function I does, which
is described in the following.

First, note that each configuration 〈s1, s2, . . . , sN〉 is a snapshot of the
situation of each oscillator at a given point of time t. This situation can be
depicted in a circle of radius 1 associating to each automaton Ti, modulo 2πh
for some h ∈ N, the angle θi(t) = ui

pi
· 2π, where ui is the time elapsed since

the last occurrence of the distinguished action ai. By the transformation
described at the beginning of Section 3.3, we know that ui is precisely the
value of the clock xi that can be derived from si = (q, ν) as ν(xi). Note that
this is true also in the starting configuration (for which we consider t = 0),
as we showed in Section 3.3.2.

Using this transformation we can calculate the quantity

αi =
K

N

N∑
j=1

sin(θj(t)− θi(t))

for each automaton Ti. Then, according to the discretisation of the model
(see Section 3.3), during the time slice δt the i-th oscillator has to move
forward, in the circle representation, of an angle (ωi + αi)δt, where ωi = 2π

pi

is its natural frequency. The time ∆i the automaton Ti has to consume to
do this is such that (ωi + αi)δt = ωi∆i. Thus, ∆i = δt + αiδt

ωi
, which is the

value of I(i, δt, s1, s2, . . . , sN).

3.3.5. Peskin interaction

In this section we show another possible instance of the interaction se-
mantics in which the oscillators are pulse coupled. The model is that of
Peskin introduced in Section 2.4.

When considering pulse interactions, if in a time slice δt none of the
oscillators performs its distinguished action, which we use to represent the
“pulse event” observed by the others, every oscillator goes ahead with its
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normal behaviour without perturbations. Thus, we only need to specify the
interaction when at least one of the oscillator is going to fire in the current
δt.

Recall the dynamics of interactions of pacemaker cells introduced in Sec-
tion 2.4. To frame Equation (4) in our model we scale the [0, 1] interval of
the cell voltage to the interval [0, 2π]. The initial voltage v0

i of oscillator i
becomes, in our model, its initial phase as θ0

i = vi · 2π. The frequency of the
oscillator is calculated, using the relation specified in the previous section,
from its period pi, which can be determined using Equation (3) as follows:

pi =

∫ 1

0

1

S0 − γxi
dxi =

1

γ
ln

∣∣∣∣ S0

S0 − γ

∣∣∣∣
with the conditions that |γ| < S0 and γ 6= 0.

The parameter ε of Equation (4), a small pulse of voltage, needs to be
transformed into the corresponding small pulse of time εt as εt = piε.

Let ui, for all i, be the time elapsed since the last occurrence of the
distinguished action ai, as described in the previous section. We consider
the vector v with components vj = pj − (uj + δt), j = 1, . . . N . If all vj
are positive, then no oscillator is going to pulse in this δt and the value of
I(i, δt, s1, s2, . . . , sN) is exactly δt for all i. Otherwise, let j be the index of
the minimum value in vector v3. In this case we know that oscillator j is the
first that is going to fire in this δt. Then, according to Equation (4) and to
the rescaling in the time domain we discussed above, we get:

I(i, δt, s1, s2, . . . , sN) =


δt+ εt if i 6= j ∧ vi > 0
δt+ min(εt, |vj − vi|) if i 6= j ∧ vi ≤ 0
δt if i = j

The second case corresponds to the situation in which oscillator i is close to
fire in this δt but it is preempted by oscillator j. Then we bring oscillator i to
perfectly synchronise with oscillator j as required in Equation (4), unless the
time pulse εt is shorter than the time leap required to perfectly synchronise
i and j.

3If more than one component has the minimum value, then we take anyone of them.
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4. Logic for biological oscillators

In this section, we introduce a logic, Biological Oscillator Synchronisation
Logic (BOSL), in order to specify and, thus, detect collective synchronisa-
tion properties of a population of coupled oscillators modeled as oscillator
timed automata. We provide the syntax, the semantics and a model check-
ing algorithm for BOSL. At the end of the section we present a case study
showing how oscillator timed automata and BOSL can be used to analyse a
real scenario as the synchronisation of pacemaker cells.

4.1. State model of BOSL

In BOSL the flow of time is a succession of consecutive time intervals of
the fixed pace δt, as we introduced in Section 3.3. As usual in discretised
scenarios, the shorter is δt the more accurate is the synchronisation detection
and the more complex is the computation. To simplify the notation, we use
natural numbers to denote time steps: t = 0 is the initial time and time step
t > 0 corresponds to the real time t · δt.

At each time step we consider an underlying population of oscillator timed
automata T1, . . . , TN to which we associate a state

M = (〈s1, . . . , sN〉,D,D(∗), C,P)

Each si is a state of S(Ti) in which the transformation described in Section 3.3
has been applied in order to introduce the special clocks xi. D = {d1, · · · , dn}
is a vector of state variables whose values are the remaining times, for the
oscillator timed automata we are considering, to accomplish their distin-
guished actions. The values of each di can be easily inferred from the state
si = (q, ν) as pi − ν(xi). D(∗) has to be intended as a store. It is a set of
vectors of constants whose values are stored remaining times used to save
the values of the state variables di at certain time steps in order to compare
them with successive values of the state variables or with other values in the
state. These stored values are needed for correctly defining the semantics of
a special operator of the logic that freezes the values and use them in its sub-
formula. C is a vector of state constants, usually representing the parameters
of the interaction model. P is a vector of calculated state variables whose
values depend on the variables in D according to the particular interaction
semantics of the underlying oscillator timed automata. For instance, for the
Kuramoto interaction (see Section 3.3.4) C = {K} where K ∈ R is the in-
teraction constant between the oscillators automata, and P = {r} where r
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is the phase coherence calculated at any time step using Equation (2). In
the case of Peskin interaction C = {εt, γ, S0} where εt is the small time pulse
parameter used to accelerate the oscillators when they perceive a pulse event
from another oscillator, and γ, S0 are vectors containing the intrinsic prop-
erties of the N oscillators (see Sections 2.4 and 3.3.5). P is empty in this
case.

An initial state, denotedM0, is such that the tuple 〈s1
0, s

2
0, . . . , s

N
0 〉 calcu-

lated as described in Proposition 3.4, the variables in D are assigned conse-
quently, the values of P are calculated accordingly to the interaction model
and D(∗) is empty.

Let us describe how a new state M′ = (〈s′1, . . . , s′N〉,D′,D(∗), C,P ′) at
time step t + 1 is obtained from a state M = (〈s1, . . . , sN〉,D,D(∗), C,P) at
time step t.

First, we perform a step of the progress relation described in Section 3.3.3:

〈s1, s2, . . . , sN〉
λ1,λ2,...,λN

−−−−−−→
δt

〈s′1, s′2, . . . , s′N〉

This means that the particular interaction function I of the underlying os-
cillators has to be used and one of the possible non-deterministically chosen
subderivations are performed internally by the automata.

Then, according to the given semantics, the new values of each state
variable d′i of D′ are

d′i =

{
di −∆i if ∆i ≤ di
pi − (∆i − di) if ∆i > di

where ∆i = I(i, δt, s1, s2, . . . , sN) is the time calculated by the interaction
function I - instantiated to the particular kind of interaction considered (see,
for instance, Section 3.3.4 and Section 3.3.5) - for the current step of activity
of oscillator i in the underlying population of oscillator timed automata, as
described in Section 3.3.

Finally, we have to re-compute the values P ′ of calculated state variables,
using the new values of D′, according to the equations defining them.

Differently from classical state models that are Kripke structures, the
state space of BOSL is a forest of infinite trees whose nodes are pairs (M, t).
The root of each tree is a node (M0, 0), whereM0 is one of the possible initial
states4. The child nodes of a node (M, t) are all the possible nodes (M′, t+1)

4The number of trees in the forest is given by the (finite) number of possible initial

25



that can be obtained by the procedure described above. The branching size
is given by the (finite) number of possible different non-deterministic choices

that can be made in the step of the progress relation
λ1,λ2,...,λN

−−−−−−→
δt

.

However, as we shall see in the following, the infiniteness of the state
space is not a problem for the model checking of a given BOSL formula.
Informally, since the properties observed by BOSL are independent from
how the non-determinism is resolved, then the model checker can chose any
tree in the forest and any of the branching when it moves ahead of a time
step. Moreover, since all temporal operators in BOSL are bounded, the truth
value of the formula is determined after a bounded number of time steps.

4.2. Syntax and semantics of BOSL

The logic BOSL has the same main temporal and logical operators of
Linear Temporal Logic (LTL) [30]. However, as we described in the previous
section, the models are different and the model checking technique we shall
present in Section 4.4 is not standard.

Moreover, BOSL atomic formulae are propositions given in terms of equal-
ities or inequalities of linear combinations of state variables and constants
belonging to the following components of the state model: D,D(∗), C, and P
(see Section 4.1).

With respect to other timed temporal logics that model check timed au-
tomata, such as MTL [31] or TCTL [20], the BOSL logic uses a completely
different concept of model and is focused on properties based on a “collective
emerging” behaviour of the system instead of classical properties in verifica-
tion as safety or liveness properties.

The syntax of BOSL is as follows:

φ ::= true | p | ¬φ | φ ∧ φ | Xφ | φU≺m φ | D(h). φ
p ::=

∑
civi ∼ b

where ci, b ∈ R are real numbers, vi ∈ D∪D(∗)∪P are state variables, stored
values or calculated state variables, ∼∈ {<,≤, >,≥,=}, ≺∈ {<,≤} and
m,h ∈ N. Note that we do not allow m to be 0 if the relation < is used in a
formula φU≺m φ.

states.
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M, t |= true ⇔ for all M, t
M, t |=

∑
i ci · vi ∼ b ⇔

∑
i ci · M(vi) ∼ b

M, t |= ¬φ ⇔ M, t 6|= φ
M, t |= ψ ∧ φ ⇔ M, t |= ψ and M, t |= φ
M, t |= Xφ ⇔ M, t+ 1 |= φ

M, t |= ψU≺m φ ⇔ ∃s2 : 0 ≤ s2 ≺ m such that M, t+ s2 |= φ
and ∀s1 ∈ {0, . . . , s2 − 1} M, t+ s1 |= ψ

M, t |= D(h).φ ⇔ M
[D(∗)

:=D(∗)
∪{dh

1 (t),··· ,dh
n(t)}]

, t |= φ

Figure 3: Semantics of BOSL.

A BOSL formula has atomic propositions p, logical connectives ¬ ∧,
temporal operators X (next) U≺m (bounded until), and a freeze operator
D(h) inspired to the freeze quantification of [32].

Informally, the formula D(h). φ stores in the current state M, into the
component D(∗), the current values of the remaining times di ∈ D and then
evaluates φ. The apex number h is intended as an identificator5 of this
particular freezing, so in the subformula φ the expression d

(h)
i can be used

to denote this freezed value of the remaining time of oscillator i. To have
freezed values is useful in defining interesting synchronisation properties, as
we show in Section 4.3.

Note also that BOSL uses a bounded version of the until operator U
adding to it a constraint on the maximum time steps m to be considered.

As usual, we introduce shorthands by defining the following derivative
logical and temporal operators:

ψ ∨ φ
ψ → φ
ψ ↔ φ
3≺mψ
2≺mψ

⇔
⇔
⇔
⇔
⇔

¬(¬ψ ∧ ¬φ)
¬ψ ∨ φ
(ψ → φ) ∧ (φ→ ψ)
true U≺m ψ
¬(3≺m¬ψ)

or (∨)
implies (→)
equivalent (↔)
bounded eventually (3)
bounded always (2)

Figure 3 shows the semantics of the basic operators. Note that atomic
propositions are checked directly using the values of variables vi ∈ D∪D(∗)∪

5We do not allow the using of the same identification number h as identificator in two
different occurrences of the freeze operator in the same formula.
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P available in the state M and denoted M(vi). Concerning the temporal
operators, as usual Xφ is true if and only if φ is true at next step, and
ψU≺m φ is true if and only if ψ is continuously true - in subsequent steps -
until φ becomes true, which must happen within m (if ≺ is ≤) or m−1 (if ≺
is <) steps. Note that if s2 = 0 the set of times in the ∀ is empty, meaning
that the condition is trivially true. This corresponds to the case in which the
subformula φ is immediately true at time t.

Actually, the until operator of BOSL can be expressed using the next
operator. This is because the operator is always bounded:

Proposition 4.1. Let ψU≺m φ be a BOSL formula. Then, for all M, t:

M, t |= ψU≤m φ ⇔ M, t |=
m∨
i=0

fi(ψ, φ)

and

M, t |= ψU<m φ ⇔ M, t |=
m−1∨
i=0

fi(ψ, φ)

where

fi(ψ, φ) =

{
φ if i = 0
ψ ∧X (fi−1(ψ, φ)) if i > 0

Proof. The thesis is a well-known result of temporal logic applied in our
case. It can be shown by induction on m applying the definition of the
semantics.

The previous result allows us to simplify the model checking algorithm,
which thus deals only with the next temporal operator (see Section 4.4).

4.3. Examples of BOSL formulae

In this section we present some examples of collective synchronisation
properties that can be expressed using the logic BOSL.

Example 4.2 (Synchronisation). Using the phase-coherence parameter r, it
is possible to measure the collective behaviour of a system of smooth coupled
oscillators. In particular Kuramoto [6] showed that if K is greater than
a certain threshold Kc and the oscillators have the same frequency, after
a certain amount of time they become perfectly synchronised, i.e. r = 1.
The property that given a system of N oscillator timed automata with same
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frequencies, “it becomes perfectly synchronised within 10s”, can be specified
as:

φpsynch = 3≤10s r = 1

Note that the subscript ≤ 10s of the diamond is not a natural number as
requested in the syntax. We use this notation intending that the real sub-
script is ≤ m where m = 10s/δt, i.e. the number of time steps of length δt
corresponding to 10 seconds.

If the oscillators have slightly different frequencies and K is greater than a
certain threshold Kc, the phase-coherence parameter r becomes approximately
1. Chosen an ε and given a system of N oscillator timed automata with
slightly different frequencies, we can specify the property that “within 10s, it
becomes synchronised with an approximation of ε and, after that, it remains
synchronised for at least 5s”:

φεpsynch = 3≤10s (2≤5s r > 1− ε)

Example 4.3 (Locked and drifted oscillators). After a system of smooth
coupled oscillators interacting with the Kuramoto model starts to synchro-
nise, the population splits into a partially synchronised state consisting of
two groups of oscillators: a synchronised group, called locked - that behaves
with a frequency locked to the mean of the frequencies distribution - and a
desynchronised group, called drifted, whose natural frequencies are too ex-
treme to be entrained. In a set of locked oscillators no changes happen to the
relative remaining times in two subsequent simulation steps. The property
that, given a system of N oscillator timed automata, and given a subset F
of indexes of A = {i | 1 ≤ i ≤ N} “the oscillators in F become eventually
locked within 10s”, can be expressed as:

φFlocked = 3≤10s D
(1).X

∧
i,j∈F, i6=j

(di − dj)− (d
(1)
i − d

(1)
j ) = 0

Note here the use of the freeze operator. D(1) stores the current values of the
remaining times di in D(∗) with the identificator 1 and then, on the next time
step, they are retrieved, using the notation d

(1)
i with the identificator 1, to be

compared with the new ones.

Example 4.4 (Pulse-coupled oscillators). Fifty years ago John Buck [1] pro-
vided a review of the synchronous rhythmic flashing of fireflies. The study of
flash communication in many firefly species has revealed that timing relations
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between the flashes provide the necessary information in this system for sex-
ual and species selection. In particular it has been shown that flash synchrony
is pervasively, but enigmatically involved in the courtship. We can consider
fireflies as a set of almost identical (same frequency) pulse-coupled oscilla-
tors, where the synchronisation happens when each firefly flashes. In this
case we can consider a Peskin-like interaction semantics for the behaviour of
the oscillator timed automata. Let A = {i | 1 ≤ i ≤ N} be the set of indexes
of all oscillators representing N fireflies. The property that, given a firefly
with index z “in the first 20 seconds, whenever z flashes all fireflies will be
synchronised within 5s”, can be expressed as:

φAfirefly = 2≤20s((dz = 0)→ 3≤5s (
∧
i,j∈A

(di − dj) = 0))

Note that, however, the first flashing of z in the first 20 seconds is the in-
teresting case. After that, if the formula is true, all fireflies are always syn-
chronised, as the synchronisation is a persisting property over time in this
synchronisation model.

4.4. Model checking algorithm

Table 1 shows a high level description of the recursive model checking
function mcBOSL. It takes a BOSL formula φ - where all the occurrences of
the bounded until operator have been translated as shown in Proposition 4.1
- a state M (initially an initial state M0), a discretised time (initially 0),
and a diagnostic trace (initially empty). The function evaluates the formula
φ over M and gives a counterexample (a diagnostic trace) whenever the
formula is false.

The addVariables function allows to store the current state variables di ∈
D in the component D(∗) ofM whenever a freeze operator is met during the
parsing.

For each X operator in the formula, a nextStep function is called in order
to calculate the evolution of the system as described in Section 4.1. The
function nextStep selects one of the (possibly different) successor states M′

at time t+1 that can be generated due to the non-determinism of the progress
relation step, as discussed in Section 4.1. Here we do not need to follow all the
possible branches because they only change the “non-oscillating, internal”
behaviours of the oscillator timed automata in the population. In other
words, the BOSL formulae observe only the remaining times di in the state
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function mcBOSL(φ,M, t, dTrace)
. Returns (true, �) or (false, a diagnostic trace)

select case
case φ = true

return (True, �)
end case
case isAtomic(φ)

return checkAtomicProp(φ,M, t, dTrace)
end case
case φ = ¬φ1

return notDiag(mcBOSL(φ1,M, t, dTrace), φ1,M, t, dTrace)
end case
case φ = φ1 ∧ φ2

M′ ←M
dTrace′ ← dTrace
return mergeAnd(

mcBOSL(φ1,M′, t, dTrace′),
mcBOSL(φ2,M′, t, dTrace′))

end case
case φ = Xφ1

dTrace← append(dTrace, φ,M, t)
M← nextStep(M)
return mcBOSL (φ1,M, t+ 1, dTrace)

end case
case φ = D(h). φ1

dTrace← append(dTrace, φ,M, t)
M← addVariables(M, h)
return mcBOSL (φ1,M, t, dTrace)

end case
end select

end function

Table 1: Model checking algorithm for BOSL.
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model and the other values defined inM. These times are calculated from the
clocks xi of the automata and, by the hypotheses of Definition 3.2, these are
not affected by non-deterministic choices made on the underlying automata
because we are assured that no matter which path is taken, every automaton
Ti will fire its distinguished action after just di = pi − νi(xi) time, where νi
is the current clock valuation of automaton Ti.

Finally, the functions notDiag and mergeAnd simply manage the return-
ing of a correct counterexample, given the results of the recursive calls.

The complexity of mcBOSL is determined in the following proposition.

Proposition 4.5. Let m be the maximum depth of the syntactic tree of the
formula φ and let N be the number of oscillators considered in M. The
complexity of the function mcBOSL(φ,M, t, dTrace) in the worst case is O(2m ·
N).

Proof. We can estimate the time needed - in the worst case - to execute the
function mcBOSL on a formula whose syntactic tree has depth m, as follows:

T (m) =

{
aN if m = 0
2T (m− 1) + b if m > 0

In the case m = 0 the algorithm checks the validity of an atomic proposition,
i.e. the validity of a disequation with a number of variables proportional to
the number of oscillators N . In the case m > 0 the worst situation is that
of the ∧ operator in which two recursive calls are to be done and a constant
time b is needed to merge the results.

Unfolding the recursive definition of T (m) we get T (m) = 2T (m−1)+b =
4T (m− 2) + 2b+ b = {after k unfoldings} = 2kT (m− k) +

∑k−1
i=0 b2

i, where
the last sum derives from the accumulation of the merging times. Thus, the
complete unfolded definition is, when k = m, T (m) = 2mT (0) + b

∑m−1
i=0 2i =

a2mN + b(2m − 1) = 2m(aN + b)− b which is in O(2m ·N).

A prototype implementation of the algorithm, managing only the case of
Kuramoto interaction, can be found in the BOSL model checker, available
at [33]. In order to overcome the high complexity of the algorithm we used
some optimisations in the implementation, such as an iterative breadth-first
search instead of a recursive depth-first search and efficient data structures
to represent the state and to perform the requested checks on state variables.
Moreover, to provide a good approximation of the relative time increment for

32



each oscillator timed automaton we needed, within each δt, to use a proper
integration method that depends on the interaction function. In the case of
Peskin, in which the interaction function is linear, the Euler method would
have been sufficient, while the non-linear nature of the Kuramoto interaction
function suggested the use of a Runge Kutta 4th order method [34]. The
choice of the δt, as we mentioned before, is very important for the granularity
of the analysis. In fact, we can not specify in a formula any interval of time
that is not a multiple of δt. The performance of the resulted model checker
is, in the average case, satisfying.

Let us show a simple analysis carried out with the model checker. We
generated a system of 40 oscillators by choosing randomly the initial phases in
the range [0, 2π) and the frequencies following a CauchyLorentz distribution
in the range (0, 1). Figure 4 shows the distribution of the phases of each
oscillator at the beginning. We set the coupling strength k = 4.0 and we
check the formula 3≤10s r > 0.98. Figure 5 shows the result of the model
checker that found this property to be true at 1.05s.

As a final remark we want to underline that the kind of analysis performed
by the BOSL model checker could not be carried out by existing model
checking tools for timed automata such as UPPAAL [25], KRONOS [23] or
IF [35]. The main reasons are the completely different state space of the
BOSL logic and the peculiarity of the successor function, depending on the
interaction model, we use.

4.5. Case study: Pacemaker cells

The contractions of the heart are controlled by chemical impulses. The
cells that create these rhythmical impulses are called pacemaker cells, and
they directly control the heart rate. Pacemakers are also called the artificial
devices that can be used after damage to the body’s intrinsic conduction
system to produce these impulses synthetically.

We can abstract the behaviour of a population of three pacemaker cells
with the set of oscillator timed automata described in Figure 6 on the right.
As the same figure shows on the left, after a phase of initial delay - less
than the period of the oscillation - the cell fires an action potential, then
undergoes a phase of depolarisation and finally it goes to the resting phase.
The distinguish action of each oscillator timed automaton is *fire*. We chose
the intrinsic pacemaker cycle length (T) of 485 ms, which is consistent with
experimental data of a rabbit pacemaker cell published in the literature [36].
The aim of the case study is to verify some synchronisation properties of the
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Figure 4: The initial configuration of the oscillators.
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Figure 5: The verification of the formula 3≤10s r > 0.98.
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population of oscillators shown in Figure 6. Since Peskin model [2] was used
to study the pacemaker cells as pulsed-coupled oscillators, we used the Peskin
interaction semantics discussed in Section 3.3.5. To find the parameters that
generates an oscillator with a period of firing of T = 485ms, we chose γ = 1
and used the following formula to calculate S0:

S0 =
eTγγ

eTγ − 1
=

e0.485

e0.485 − 1
≈ 2.6

To calculate the corresponding value of phase of each oscillator i in the
interval [0 . . . 2π], given the remaining time td for the next distinguish action,
we used the following formula:

pi =
−2πS0

γ

(
1

eγ(T−td)
− 1

)
Figure 7 shows the behaviour of the oscillator timed automata without

synchronisation (εt = 0). Using the BOSL logic we can check if the synchro-
nisation happens following a temporal sequence and within a certain amount
of time. For example, we want to verify if, setting εt = 0.06, “within 2 sec-
onds, automaton A synchronises first with the automaton B and then, within
maximum 2 natural pacemaker cycles, also with the automaton C”:

φ = 3≤2s (dA = 0 ∧ dB = 0 ∧ dC 6= 0 ∧
X (3≤0.97s (dA = 0 ∧ dB = 0 ∧ dC = 0))

As Figure 8 shows, this property is verified from the 917 ms. We can also
check that automaton A never performs the distinguish action later than the
automaton C using this formula:

φ = 2≤2s (dA − dC <= 0)

The logic can be also used to find the right parameter εt such that a
certain property is verified, by performing different simulations. This could
be very beneficial in the future to control the oscillator interaction in order
that a certain formula could be satisfied. An example could be finding the
minimum εt (with an approximation of two digits after dot) such that within
a maximum length of 3 natural pacemaker cycles we can obtain the full
synchronisation:

φ = 3≤1.455s (dA = 0 ∧ dB = 0 ∧ dC = 0)

As Figures 8 and 9 show, the minimum εt, with two digits after dot such
that this formula is true is 0.07.
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Figure 6: Oscillator timed automata for pacemaker cells.

37



200 400 600 800 1000 1200
0

pi/2

pi

3 pi/2

2 pi (fire)

 

 

t: 96t: 18

Time in milliseconds

ph
as

e 
in

 ra
di

an
ts

t: 153 t: 503 t: 638t: 581 OTA A
OTA B
OTA C

Figure 7: Oscillator timed automata without synchronisation.
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Figure 8: Self-synchronisation of oscillator timed automata with εt = 0.06.
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Figure 9: Self-synchronisation of oscillator timed automata with εt = 0.07.

5. Conclusions

In this paper we have defined a subclass of timed automata, oscillator
timed automata, suitable to model biological oscillators. We have specified
an interaction semantics, parametric w.r.t. a model of synchronisation, and
we have instantiated it to the Kuramoto model, an example of smooth inter-
action, and to the Peskin model for pacemaker cells in the heart, an example
of pulse interaction. A main advantage of the semantic definition is that
it does not require changing the structure of the automata modelling the
standalone oscillators. We have also introduced a logic, Biological Oscilla-
tor Synchronisation Logic (BOSL), in order to specify, and detect by model
checking, collective synchronisation properties of a population of oscillator
timed automata. A model checking algorithm has been presented and the im-
plementation of a prototype of the model checker is available at [33]. Finally,
a case study on pacemaker cells has been developed.

We remark that the objective of the modelling framework of oscillator
timed automata we defined is not limited to the checking of BOSL properties,
but it is intended to be a base for other analyses, such as checking of the
internal states or internal events of some oscillators possibly in conjunction
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with synchronisation properties, define control strategies depending on or
triggered by the internal state of some oscillators, enlarge the synchronisation
function in order to consider also the internal state of the oscillator, together
with the relative distances of other oscillators in the population, to define
the perturbation of time.

The main future directions of our work are: 1) extend BOSL logic with
control operators that allow us to infer how to influence a set of oscillators
by adding artificial oscillators - which we can control- or how to modify the
parameters of some oscillators, in order to satisfy a desired synchronisation
property. 2) Define a logic more expressive than BOSL in order to specify
synchronisation-related properties depending also on the states and events of
the oscillator timed automata considered, not only on the remaining times
to the next firing. 3) A long term objective: adapt the framework and the
model checking of the extended logic to control fibrillation in cardiac cells
networks, exploiting other detection techniques already partially available
(for more details of this line of research see [37]).
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