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Abstract. In this paper we investigate the use of abstract interpogtgechniques for
statically preventing race conditions. To this purpose niéch the concurrent object
calculuscong; by annotating terms with the set of “locks” owned at any tiMé& use
an abstract form of the object calculus to check the absehiEce conditions. We
show that abstract interpretation is more flexible than typalyses, and it allows to
certify as “race free” a larger class of programs.

1. Introduction

When programming with multithread languages, insidiousrsr usually denoted asace
conditions can arise [2]. A race condition occurs when two processessaca shared
resource simultaneously, often provoking an incorrectiamekpected behavior.

A usual method to avoid such conditions is to provide eachures with dock. A process
must acquire the lock on a resource before using it, and a&tboksource cannot be used
by other processes. Concurrent object oriented languagexftan based on this approach:
resources are embedded in an object and a lock is attacheeldbject. Java methods adopt
this strategy: a method or a block can be declamgtchronized. A lock is associated to
every object which has a synchronized code [12].

Despite this synchronization method, it is not unusual tdemmultithreaded programs
which access objects without acquiring locks on them, thieatmg error conditions. The
non-acquisition can be originated by different reasorsntiost common being mistakes or
the conviction that an object is accessed by a single thread.
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Many works have been devoted to the static analysis of pnogjri@ find possible race
conditions. Such methods are essentially based on typgsism§l0, 11, 4, 5]: a program
is well-typed iff an object is accessed only when a suitablteo locks, corresponding to
a policy of synchronization, is acquired. Obviously, thpeycorrectness can be checked
statically by applying a set of typing rules.

The properties of concurrent object languages, includigfree conditions, can be suit-
ably studied on languages with a few basic primitives whattve as a foundation for object
oriented languages. To this purpose many calculi weredntred in the past [3, 8, 9, 14].
In this paper we refer to the imperatiebject calculusimpg, which was introduced in [1],
and extended to a concurrent oneng, in[11, 13].

In [11] a type analysis checks that an object, itoac term, is accessed by a process only
if a lock on that object is owned by the process itself.

All the mentioned type analyses check a program under dogss assumptions which are
somewhat rigid. For example the above rule could be relaxsehwo concurrent accesses
to the same object can be done during the execution of pregeéanethod for a less rigid
analysis can be based abstract interpretatiori6, 7]. Abstract interpretation executes the
program in an abstract (approximated) way to staticallyckldynamic properties, and, in
many cases, it can be more precise than type analyses.

To apply abstract interpretation techniques we define aldeituntyped object calculus,
based on the one defined in [11, 13], which we aalthing;. It is imperative and concurrent,
and it embodies, in its terms, the knowledge on the locks avah@ny time. On the basis of
this information the semantic definition can be aware, atithe of an access to an object,
whether the lock to that object is owned. Thus an analysishegmerformed to check that
processes accessing an object own the right locks, or thaimmirrent accesses to an object
are performed at the same time.

The plan of the paper is the following: Section 2 introdudesiperative concurrent object
calculusacong,. Section 3 defines the abstract interpretation of the aagcahd shows how
the abstract semantics can be used to discover possibleoad#@ions. Finally, Section 4
concludes.

2. The object calculus acon¢

This section describes a concurrent object calculus whitlased on the calculiin [11, 13].

2.1. Syntax

The Table 1 defines the following syntactic categories: ltestienotations, terms and state-
ments.

Resultsare defined asariables numbersor referencego objects.

A denotation[¢; = ¢(z;)t, """ describes an object with a collections of methods with
names/;. Note that alsanstance variablesre considered methods (like in [1]) with a
constant definition. The self parameter of each method corresponds to the reference
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U = results
variable
location

n integer number

d BES denotations

[6; = ¢(z;)t, €] object
l BES lock states
° unlocked
* locked
s, t = terms
U result
vp.t restriction
p—d reference
p.A method invocation
pl <=g(x)t method update
lockpint lock acquisition
letx =sint let
srt parallel composition
e integer expression
if e thens elset if

a,b = statements

U result
vp.a restriction
p—d reference
lockedp in a lock acquired
letz =ainb let

[t~ lock environment
al'b parallel composition
if e thena elseb if

Table 1. Syntax o&cong
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this used inside the object definitions in object oriented pnognéng. In addition the
object has dock statewhich can be eithes, meaning that the object is not locked by any
process, os, meaning that a process owns a lock on it.

A termis aresult arestriction areference amethod invocationa method updatealock
acquisition alet expressiona parallel compositiorof terms, arinteger expressioor anif.
The reference term says that an object is identified by trerer€ep, to it. The reference
p is introduced by a restrictiomp.t, which binds the referengewith scopet. The method
invocation and method update are the usual ones. A lock sitiquiis a term which de-
scribes an execution after having acquired a lock to an tbjéw parallel composition of
terms,sr t, indicates the parallel execution efand¢. The result of the construct is the
result of¢; s is evaluated only for effect. Integer expressions, let teand if terms are
usual.

Finally, the syntax of statements, based on terms, givesttbeture of programs. A result

is a statement the meaning of which is the result itself. Agalisly to terms, theeference
statementp — d, states that the object denoted #ys pointed byp. A lock acquired
statementlockedp in a, says that a lock op is owned and that the statementan be
executed under this lock. lack environment]t]”, whereL is a set of references, indicates
that the termr is executed while owning a lock on all the objects the refeesrof which
belong to the sef.. Thelet statementan be used to implement sequence of statements.
letz = a in b corresponds to; b if = does not occur ih. Finally, the parallel composition

of statements and the if statement are analogous to the btersns.

2.2. Semantics of aconc

The semantics adcong; is given in terms of a structural congruence and a set of temuc
rules. Structural congruence allows to syntactically sfarm statements in order to apply
the reduction rules. The application of a reduction ruleegponds to a computation step.

Both the structural congruence and reduction rules arengivéerms ofevaluations con-
texts like in [11]. An evaluation contexf[] is a statement with the ho[g The hole can be
filled by a statement, thu$[a] means the evaluation contexf] with the hole filled by the
statement:.

The possible holes in a statement are given in Table 2, whergyntax of contexts is given.
['] means that the context can be the whole statement.

The structural congruence rules are given in Table 3.

The first rule says that the left statement in a parallel caitjpm can be inserted or ex-
tracted from an evaluation context. The reason of such araenge is that the left state-
ment is only evaluated for effect. For the same reason ther @idstatements on the left

of the rightmost one in a parallel composition is irrelevésgcond rule). The third rule is
slightly more complex. When a parallel composition of teimexecuted under the locks

in the setL, it is congruent with the execution of the left term under ¢nepty set of locks
and the execution of the right one with the whole set of loEkS his because the parallel
composition corresponds to tierk statement in object oriented languages: the process
started in parallel by @ork inherits no locks from the father process (like the term an th
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E =
[]
Erb
ar&
lockedp in £
letz =&inb

if £thena elseb
vp.E

Table 2. Reduction contexts

ar &b = Elar b

albrc = brare

[sr¢]* = [s]°r []"

[letz = sint]* = letz = [s]" in [t]*

[if e thens elset]” = if [e]” then[s]” else[t]*
[vpt]* = vp.Ji]*

[u]* = u

[p—d*=p—d

Table 3. Structural congruence rules
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left of ” in our case). Executing the sequencing statenfégttz = a in b]]L, under the set
of locks L corresponds to executefollowed by b under the same set. All the components
of an if statement are executed under the lock set of the wdtatement. The set of locks
on a restriction can be transferred inside the body of thieicden. Finally, either a result
or a reference statement are not affected by a set of locks.

The reduction rules are given in Table 4.

(Red invoke) requires a statement, in parallel, which dsfthe reference to the object the
method of which is called; then the method is invoked with ithetantiation of the self
parameter to the reference to the object itself. (Red updpidates a method in an object;
the result of the statement is the reference to the modifigtbfas in [11, 13]). Note that,
both in method invocation and update, we can know, by ingpgthe setl, whether the
statement owns a lock on the object. This information cateoinferred inconc;. (Red
lock) acquires a lock to an object and (Red unlock) unloclesdhject when a result is
computed. (Red let) performs a substitution for the vadabivhen a result: is reached.
(Red if0) and (red ifn) reduce the if statement in the stachaeaty. Finally (Red context)
says that the reduction rules can be applied to any evatuatintext. Note that no rule is
given for integer expressions. We assume for them the stameductions.

3. Abstract interpretation of aconcg

In this section we define an abstract interpretatioracdng;. Such an interpretation is
given with respect to an abstract calculus which approxs#tte concrete one. In partic-
ular, given a statement in the abstract calculus, the setssiple statements which can be
generated by reduction and structural congruence, sidrom it, is finite. This allows to
construct a finite transition system, the states of whictstatments, which can be finitely
analyzed to establish properties of it.
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d = [EZ = g(ﬂj‘l)tl ie(l...n)]l j € (1, e ,’I’L)

Red invok
pHdP[[p,gj]]L —>pn—>d7[[tj{{mﬂ_p}}]]L (Red invoke)

d=[t; =q(z;)t, ie(l...n)]l d =[l; =c(x)t,l; = s(z;)t, ie(l...n)—{j}]l

prsdr [ply < c@)t]* — p d'Tp

d= [ez = §(f£i)ti ie(l...n)]o d = [6, _ §(1’Z’)t ie(l...n)].

p s dr Jlock pin t]¥ — p — d'r lockedp in [¢]* P} (Red lock)

d=[t; =s(zi)t; ie(l...n)]. d = [t; = ()t iE(l...n)]o

p s drlockedpinu — prsd'Tu (Red unlock)

fletz = uint]” — [tgmeal” o0 e

if 0 thena elseb — «a (Red if0)

n#0

if 1 thena elseb — b (xed M)

a—a

Ela] — E[d] (Red context)

(Red update)

Table 4. Reduction rules
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We call the abstract object calculasong?. It syntax is given in Table 5.

W n= alplo

e — (b= g(:ﬂi)tg iel...n]l

I — o

sttt = w|vptt|prs df | pl|pl <= g(x)tt | lockpin tf

letz = sfintf | sfr¢f | © |if © thens® elset!

at, b = wu|vp.af|p— d*|lockedpin af
letz = af in b | [t1]" | af P b? | if © thena elseb?

Table 5. Syntax oficong*

There are a few differences between the syntax of the canared the abstract calculus.
In the abstract calculus, for the sake of finiteness, all tiieger values and the integer
expressions are collapsed to a unique value, denote. by

Recall that we deal with a calculus, thus the concrete anlesdbglomains are the concrete
and abstract syntax, respectively. The set of statemeititei(€oncrete or abstract) can be
defined as lattices by adding to the flat set of them a top andterb@lement.

To formalize the abstract interpretation we defalstraction functionsc, andconcretiza-

tion functions -, between the concrete and the abstract domains. In pantimal define an
abstract function for each syntactic category, thus we defin © — u#, oy : d — d*, and

SO on.

The definition ofa functions is given in Table 6 where, for the sake of readgbithe
argument of each function is an element of the concrete stjateategories rather than a
set. The abstraction of a set of concrete elements is defagedsual, as the least upper
bound of the abstractions of the single elements of the satie that our abstract domains
are such that the least upper bound of any two syntacticé#figrent abstract elements is
the top element.

The concretization functions;, are defined in Table 7. Note thatfunctions produce sets
of concrete syntactic objects. The concretization of tipesflement is the set of all concrete
syntactic objects. A concretization of an abstract syitambject o results in the set of
concrete syntactic objects the abstraction of whialf isself.

The abstract semantics is given, analogously to the canomt, by means of structural
congruence and reduction rules. Because of their sinyilaxithe concrete rules we redefine
only the ones which differ. The other ones are identicalrtgfpam the fact that the concrete
syntactic categories should be substituted by the absirsst.
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Oéd([gi = §(xi)ti iel...n]l)

a(u)
a(vp-t)
(p—d)
t(p-£)
t(pl <= s(x)t)
(

(

(

(

(677

Q2

Q

a(letx =sint)
ar(srt)

t(e)

ay(if e thens elset)

Q

Q

s(u)
as(vp.a)
s(pd)
as(lockedp in a)
(
(
(
(i

Q

as(letz =ainb)

[t1")
ar b)
if e thena elsed)

Q

s
Qs

Qs

p
O]

[0 = s(wi)ou(t;) &)

o (u)
vp.ay(t)

p = aq(d)
p.L

pl <= s(z)ou(t)

letz = ay(s) in ay(t)
a(t) T ay(s)

©

if © thenay(s) elseay(t)

ar(u)

vp.as(a)

p > ag(d)

lockedp in as(a)

letz = as(a) in as(b)

o (8)]*

as(a)r as(b)

if ® thenas(a) elseas(b)

Table 6. Abstraction functions
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() = {z}

e (p) = {p}

Y (®) = {n|nis an integer numbér

qalls = <@t ") = (= (@t Y 4 € )

Ve(u) = (u)

i (vp.th) = {vpt|ten(th}

%(p = &) = {prrd|der(d}

Ve (p-£) = {p.t}

Ye(pl <= g(x)th) = {pl<=g(a)t|tey(th)

vi(letz = st in tf) = {letz =sint|scy(sh),t € y(th}

(st 1) = {srt|semn(sh),temn(th}

1(©) = {e | einteger expressioh

v (if © thenst elset’) = {if ethenselset | s € y(s?),t € 3 (t?),
e integer expressioh

Vs(w) = 7r(w)

s (vp.a?) = {vpalac(ah)}

Ys(p > d°) = {p—d|deyald)}

~,(lockedp in af) = {lockedpina|a € vs(a%)}

vs(letz = af in bf) = {letz =ainb|a € ys(at),b € (b))}

7s([#41") = {[1" |t € w(#)}

vs(ak P bF) = {arb|acvs(at),b e v,(b)}

vs(if ® thena! elseb?) = {if ethena elseb | a € ~4(al),b € ,(b?),

e integer expressioh

Table 7. Concretization functions
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Thus, structural congruence rules are still the ones inéTalhpplied to the abstract syntax).

Abstract reduction rules are analogous to the ones defingdtle 4, the only differences
being the definitions of the rules for the if statement. Thetraet rules for this statement
are given in Table 8.

1
if ©® thena? elseb! —f af (Red if!)

0
if ® thena! elseb! —st bt (Red if'?)

Table 8. Abstract reduction rules

Let us note that, differently from the concrete rules, th&tr@et reduction of an if statement
produces two different results.

We can state the correctness of the abstract interpretiagidime following results.

First we have to show thatand~ form a Galois insertion between the concrete and abstract
domains.

Proposition 3.1. Let af be an abstract statement, afidc p(a) be a set of concrete state-
ments.a; and~, forms a Galois insertion.

That is:

«s andy, are monotonic,

S C vs(as(S)), wherea, and~y, are applied pointwise,
as('ys(aﬁ)) =d.

Proof:
The concrete and abstract set of statements are flat,athiss monotonic on these sets.
Adding a top and a bottom element does not change the property

For each concrete statementwe have, by the definition af; and~s, thata € vs(as(a)).
ThusS C ~,(as(S)) for each sefS of concrete statements.

Given a concrete statementthe cases of the definitions of, and~, are such that <
vs(a?) = as(s) = af. Thus, for any abstract statemesit o (v,(af)) = af. O

Proposition 3.2. Let a andb be concrete statements, the following condition holds.

If @ — b then there exists an abstract statentésuch thats(a) —* b* andb € 4 (b%).
— and—" include the congruence rule applications which make plestile reduction.
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Proof:
The proposition is trivially true for all the statementsfeient from the if one. The abstract
rules for the if statement, in Table 8, make the propositrae for it as well. a

This proposition states that the abstract reduction ctiyrapproximates the concrete one.
That is every concrete computation has a correspondingaabsine.

Thus, if a property is verified for all the reductions of antadxst statementis(a) then it is
verified also fora.

As a consequence we can check, by abstract reduction, #nrgtascess to an object is done
while owning the lock to that object. This analysis correggsto the one in [11].

By using abstract interpretation we can apply a less rigalyasis to detect races. In par-
ticular we check that, during the reduction of a statemenho parallel accesses to an
object, referred by, can be performed. That is a (sub)statement of the fdima”, where
a,a" € {[pL]*}y U{p.t; < s(x)t]**}, is never reached.

This can be done by analyzing the abstractiorm.0Recall that we can construct a finite
transition system representing all possible computatains;(a). Thus, we can statically
check that the above kind of statement is never introducethynabstract computation. If
this is true, we can conclude that it cannot be introducedhénconcrete computation of
a as well. Of course, given the approximation introduced bstralst interpretation, the
vice-versa does not hold in general.

Let us state the result formally.

Definition 3.1. A statement (either concrete or abstractjase freeiff, for all statements

b reached during the reductions— b, b doesnot contain a (sub)statement of the form
prdrb'ry’, whered = [{; = ¢(z;)t; Z'6(1‘“”)]1 andV’, b” are statements in the set
{Ip-t:]*" |i € {1,...,n}, L1is a set of referencés.

{Ip-t; < s(@)t]** | j € {1,...,n}, L2is a set of referencés

Note that in the previous definitior> means the application of an arbitrary number of
reduction rules and structural congruence rules.

Proposition 3.3. Given a statement, if as(a) is race free, then is race free.

Proof:
By correctness of abstract interpretation [6, 7]. O

Let us give a simple example. Consider the following statgme:

a] =

[vp.p — [ = c(z)5]°Tletz = p.Lin if nthenp.l else(lockpinp.lT lockpinpd <
<(2)6)]"

as(aq) is analogous ta; apart from the substitution of for every integer value. The graph
of all possible abstract reductions tofa; ) is shown in Figure 1. For the sake of readability
we removed the restrictionp and the reference statement— [¢ = ¢(z)5]° from the
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0

[letz = p.Lin if @ thenp./ else(lock pin p.£T lock pin p.f < ¢(x)®)]

{
letz = [p.£]”in [if ® thenp.¢else(lock pin p.tr lock pin p.l < ¢(z)®)]°
b
[if © thenp.else(lock pin p.£r lock pin p.f < ¢(2)®)]°
! !
[p-4]° [lock pin p.£]°r [lock pin p.t < ¢(z) ©]°

! !
[p-]*} ¢ [lock pin p.t < ¢(z) ®]° |[lock pin p.0]° ¢ [p.l < ¢(z) ®

! !
OF [pl < o(z) o] [p-]%}p p
! !
Orp Orp

Figure 1. Abstract reduction graph fag(a;)

figure. Moreover, because it is clear from the context, weorard the word “locked” from
the terms when a lock is acquired. The structural congrueuies are applied implicitly.

It is easy to check that, in the abstract computation gralpthestatements are race free.
Thus we can conclude that the concrete computation is raeeaf well.

Let us remark that the statementis not certified by current type-based analyses, because
the object referred by is accessed, in two cases, without locking it. However sacksses
are safe because they are performed without any other aooegssed in parallel.

4. Conclusions

In this paper we have applied abstract interpretation igcies to a concurrent object cal-
culus for checking the absence of race conditions.

We have shown that the use of such techniques is more flexiliigpe-based ones. In
particular abstract interpretation allows to certify, ase free, programs which are not
certified by current type techniques.

The use of abstract interpretation is based on an extens$iarcancurrent object calculus
which consists in annotating terms with sets of locks. Tkiemsion is simple and it does
not complicate the semantics of the calculus itself.

The analysis we defined can be the base for the certificatimabbbject oriented programs.
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