
Fundamenta Informaticae 1

IOS Press

Abstract Interpretation against Races

Roberto Barbuti

Stefano Cataudella

Luca Tesei

Dipartimento di Informatica – Università di Pisa

Via F. Buonarroti, 2 56127 Pisa - Italy

email: {barbuti,cataudel,tesei}@di.unipi.it

Abstract. In this paper we investigate the use of abstract interpretation techniques for
statically preventing race conditions. To this purpose we enrich the concurrent object
calculusconcς by annotating terms with the set of “locks” owned at any time.We use
an abstract form of the object calculus to check the absence of race conditions. We
show that abstract interpretation is more flexible than typeanalyses, and it allows to
certify as “race free” a larger class of programs.

1. Introduction

When programming with multithread languages, insidious errors, usually denoted asrace
conditions, can arise [2]. A race condition occurs when two processes access a shared
resource simultaneously, often provoking an incorrect andunexpected behavior.

A usual method to avoid such conditions is to provide each resource with alock. A process
must acquire the lock on a resource before using it, and a locked resource cannot be used
by other processes. Concurrent object oriented languages are often based on this approach:
resources are embedded in an object and a lock is attached to the object. Java methods adopt
this strategy: a method or a block can be declaredsynchronized. A lock is associated to
every object which has a synchronized code [12].

Despite this synchronization method, it is not unusual to write multithreaded programs
which access objects without acquiring locks on them, thus creating error conditions. The
non-acquisition can be originated by different reasons, the most common being mistakes or
the conviction that an object is accessed by a single thread.

2 R. Barbuti, S. Cataudella, L. Tesei / Abstract Interpretation against Races

Many works have been devoted to the static analysis of programs to find possible race
conditions. Such methods are essentially based on type analysis [10, 11, 4, 5]: a program
is well-typed iff an object is accessed only when a suitable set of locks, corresponding to
a policy of synchronization, is acquired. Obviously, the type correctness can be checked
statically by applying a set of typing rules.

The properties of concurrent object languages, including race-free conditions, can be suit-
ably studied on languages with a few basic primitives which serve as a foundation for object
oriented languages. To this purpose many calculi were introduced in the past [3, 8, 9, 14].
In this paper we refer to the imperativeobject calculus, impς, which was introduced in [1],
and extended to a concurrent one,concς, in[11, 13].

In [11] a type analysis checks that an object, in aconcς term, is accessed by a process only
if a lock on that object is owned by the process itself.

All the mentioned type analyses check a program under correctness assumptions which are
somewhat rigid. For example the above rule could be relaxed when no concurrent accesses
to the same object can be done during the execution of processes. A method for a less rigid
analysis can be based onabstract interpretation[6, 7]. Abstract interpretation executes the
program in an abstract (approximated) way to statically check dynamic properties, and, in
many cases, it can be more precise than type analyses.

To apply abstract interpretation techniques we define a suitable untyped object calculus,
based on the one defined in [11, 13], which we callaconcς. It is imperative and concurrent,
and it embodies, in its terms, the knowledge on the locks owned at any time. On the basis of
this information the semantic definition can be aware, at thetime of an access to an object,
whether the lock to that object is owned. Thus an analysis canbe performed to check that
processes accessing an object own the right locks, or that noconcurrent accesses to an object
are performed at the same time.

The plan of the paper is the following: Section 2 introduces the imperative concurrent object
calculusaconcς. Section 3 defines the abstract interpretation of the calculus and shows how
the abstract semantics can be used to discover possible raceconditions. Finally, Section 4
concludes.

2. The object calculus aconcς

This section describes a concurrent object calculus which is based on the calculi in [11, 13].

2.1. Syntax

The Table 1 defines the following syntactic categories: results, denotations, terms and state-
ments.

Resultsare defined asvariables, numbersor referencesto objects.

A denotation[ℓi = ς(xi)t
i∈1...n

i]l describes an object with a collections of methods with
namesℓi. Note that alsoinstance variablesare considered methods (like in [1]) with a
constant definition. The self parameterxi of each method corresponds to the reference

R. Barbuti, S. Cataudella, L. Tesei / Abstract Interpretation against Races 3

u ::= results

x variable

p location

n integer number

d ::= denotations

[ℓi = ς(xi)t
i∈1...n

i]l object

l ::= lock states
◦ unlocked
• locked

s, t ::= terms

u result

νp.t restriction

p 7→ d reference

p.ℓ method invocation

p.ℓ ⇐ ς(x)t method update

lock p in t lock acquisition

let x = s in t let

s � t parallel composition

e integer expression

if e thens elset if

a, b ::= statements

u result

νp.a restriction

p 7→ d reference

lockedp in a lock acquired

let x = a in b let

[[t]]L lock environment

a � b parallel composition

if e thena elseb if

Table 1. Syntax ofaconcς

4 R. Barbuti, S. Cataudella, L. Tesei / Abstract Interpretation against Races

this used inside the object definitions in object oriented programming. In addition the
object has alock statewhich can be either◦, meaning that the object is not locked by any
process, or•, meaning that a process owns a lock on it.

A term is a result, a restriction, a reference, a method invocation, a method update, a lock
acquisition, a let expression, aparallel compositionof terms, aninteger expressionor anif.
The reference term says that an object is identified by the reference,p, to it. The reference
p is introduced by a restriction,νp.t, which binds the referencep with scopet. The method
invocation and method update are the usual ones. A lock acquisition is a term which de-
scribes an execution after having acquired a lock to an object. The parallel composition of
terms,s � t, indicates the parallel execution ofs and t. The result of the construct is the
result of t; s is evaluated only for effect. Integer expressions, let terms and if terms are
usual.

Finally, the syntax of statements, based on terms, gives thestructure of programs. A result
is a statement the meaning of which is the result itself. Analogously to terms, thereference
statement, p 7→ d, states that the object denoted byd is pointed byp. A lock acquired
statement, lockedp in a, says that a lock onp is owned and that the statementa can be
executed under this lock. Alock environment, [[t]]L, whereL is a set of references, indicates
that the termt is executed while owning a lock on all the objects the references of which
belong to the setL. The let statementcan be used to implement sequence of statements.
let x = a in b corresponds toa; b if x does not occur inb. Finally, the parallel composition
of statements and the if statement are analogous to the ones of terms.

2.2. Semantics of aconcς

The semantics ofaconcς is given in terms of a structural congruence and a set of reduction
rules. Structural congruence allows to syntactically transform statements in order to apply
the reduction rules. The application of a reduction rule corresponds to a computation step.

Both the structural congruence and reduction rules are given in terms ofevaluations con-
texts, like in [11]. An evaluation contextE [] is a statement with the hole[]. The hole can be
filled by a statement, thusE [a] means the evaluation contextE [] with the hole filled by the
statementa.

The possible holes in a statement are given in Table 2, where the syntax of contexts is given.
[.] means that the context can be the whole statement.

The structural congruence rules are given in Table 3.

The first rule says that the left statement in a parallel composition can be inserted or ex-
tracted from an evaluation context. The reason of such a congruence is that the left state-
ment is only evaluated for effect. For the same reason the order of statements on the left
of the rightmost one in a parallel composition is irrelevant(second rule). The third rule is
slightly more complex. When a parallel composition of termsis executed under the locks
in the setL, it is congruent with the execution of the left term under theempty set of locks
and the execution of the right one with the whole set of locksL. This because the parallel
composition corresponds to thefork statement in object oriented languages: the process
started in parallel by afork inherits no locks from the father process (like the term on the

R. Barbuti, S. Cataudella, L. Tesei / Abstract Interpretation against Races 5

E ::=

[.]

E � b

a � E

lockedp in E

let x = E in b

if E thena elseb

νp.E

Table 2. Reduction contexts

a � E [b] ≡ E [a � b]

a � b � c ≡ b � a � c

[[s � t]]L ≡ [[s]]∅ � [[t]]L

[[let x = s in t]]L ≡ let x = [[s]]L in [[t]]L

[[if e thens elset]]L ≡ if [[e]]L then[[s]]L else[[t]]L

[[νp.t]]L ≡ νp.[[t]]L

[[u]]L ≡ u

[[p 7→ d]]L ≡ p 7→ d

Table 3. Structural congruence rules

6 R. Barbuti, S. Cataudella, L. Tesei / Abstract Interpretation against Races

left of � in our case). Executing the sequencing statement,[[let x = a in b]]L, under the set
of locksL corresponds to executea followed byb under the same set. All the components
of an if statement are executed under the lock set of the wholestatement. The set of locks
on a restriction can be transferred inside the body of the restriction. Finally, either a result
or a reference statement are not affected by a set of locks.

The reduction rules are given in Table 4.

(Red invoke) requires a statement, in parallel, which defines the reference to the object the
method of which is called; then the method is invoked with theinstantiation of the self
parameter to the reference to the object itself. (Red update) updates a method in an object;
the result of the statement is the reference to the modified object (as in [11, 13]). Note that,
both in method invocation and update, we can know, by inspecting the setL, whether the
statement owns a lock on the object. This information cannotbe inferred inconcς. (Red
lock) acquires a lock to an object and (Red unlock) unlocks the object when a result is
computed. (Red let) performs a substitution for the variable x when a resultu is reached.
(Red if0) and (red ifn) reduce the if statement in the standard way. Finally (Red context)
says that the reduction rules can be applied to any evaluation context. Note that no rule is
given for integer expressions. We assume for them the standard reductions.

3. Abstract interpretation of aconcς

In this section we define an abstract interpretation ofaconcς. Such an interpretation is
given with respect to an abstract calculus which approximates the concrete one. In partic-
ular, given a statement in the abstract calculus, the set of possible statements which can be
generated by reduction and structural congruence, starting from it, is finite. This allows to
construct a finite transition system, the states of which arestatements, which can be finitely
analyzed to establish properties of it.

R. Barbuti, S. Cataudella, L. Tesei / Abstract Interpretation against Races 7

d = [ℓi = ς(xi)t
i∈(1...n)

i]l j ∈ (1, . . . , n)

p 7→ d � [[p.ℓj]]
L −→ p 7→ d � [[tj{{xj←p}}]]

L (Red invoke)

d = [ℓi = ς(xi)t
i∈(1...n)

i]l d′ = [ℓj = ς(x)t, ℓi = ς(xi)t
i∈(1...n)−{j}

i]l

p 7→ d � [[p.ℓj ⇐ ς(x)t]]L −→ p 7→ d′ � p
(Red update)

d = [ℓi = ς(xi)t
i∈(1...n)

i]◦ d′ = [ℓi = ς(xi)t
i∈(1...n)

i]•

p 7→ d � [[lock p in t]]L −→ p 7→ d′ � lockedp in [[t]]L∪{p}
(Red lock)

d = [ℓi = ς(xi)t
i∈(1...n)

i]• d′ = [ℓi = ς(xi)t
i∈(1...n)

i]◦

p 7→ d � lockedp in u −→ p 7→ d′ �u
(Red unlock)

[[let x = u in t]]L −→ [[t{{x←u}}]]
L (Red let)

if 0 thena elseb −→ a
(Red if0)

n 6= 0

if n thena elseb −→ b
(Red ifn)

a −→ a′

E [a] −→ E [a′]
(Red context)

Table 4. Reduction rules

8 R. Barbuti, S. Cataudella, L. Tesei / Abstract Interpretation against Races

We call the abstract object calculusaconcς♯. It syntax is given in Table 5.

u♯ ::= x | p | ⊙

d♯ ::= [ℓi = ς(xi)t
♯
i

i∈1...n
]l

l ::= ◦ | •

s♯, t♯ ::= u | νp.t♯ | p 7→ d♯ | p.ℓ | p.ℓ ⇐ ς(x)t♯ | lock p in t♯

let x = s♯ in t♯ | s♯ � t♯ | ⊙ | if ⊙ thens♯ elset♯

a♯, b♯ ::= u | νp.a♯ | p 7→ d♯ | lockedp in a♯

let x = a♯ in b♯ | [[t♯]]L | a♯ � b♯ | if ⊙ thena♯ elseb♯

Table 5. Syntax ofaconcς♯

There are a few differences between the syntax of the concrete and the abstract calculus.
In the abstract calculus, for the sake of finiteness, all the integer values and the integer
expressions are collapsed to a unique value, denote by⊙.

Recall that we deal with a calculus, thus the concrete and abstract domains are the concrete
and abstract syntax, respectively. The set of statements (either concrete or abstract) can be
defined as lattices by adding to the flat set of them a top and a bottom element.

To formalize the abstract interpretation we defineabstraction functions, α, andconcretiza-
tion functions, γ, between the concrete and the abstract domains. In particular we define an
abstract function for each syntactic category, thus we defineαr : u → u♯, αd : d → d♯, and
so on.

The definition ofα functions is given in Table 6 where, for the sake of readability, the
argument of each function is an element of the concrete syntactic categories rather than a
set. The abstraction of a set of concrete elements is defined,as usual, as the least upper
bound of the abstractions of the single elements of the set. Note that our abstract domains
are such that the least upper bound of any two syntactically different abstract elements is
the top element.

The concretization functions,γ, are defined in Table 7. Note thatγ functions produce sets
of concrete syntactic objects. The concretization of the top element is the set of all concrete
syntactic objects. A concretization of an abstract syntactic object o♯ results in the set of
concrete syntactic objects the abstraction of which iso♯ itself.

The abstract semantics is given, analogously to the concrete one, by means of structural
congruence and reduction rules. Because of their similarity to the concrete rules we redefine
only the ones which differ. The other ones are identical, apart from the fact that the concrete
syntactic categories should be substituted by the abstractones.

R. Barbuti, S. Cataudella, L. Tesei / Abstract Interpretation against Races 9

αr(x) = x

αr(p) = p

αr(n) = ⊙

αd([ℓi = ς(xi)t
i∈1...n

i]l) = [ℓi = ς(xi)αt(ti)
i∈1...n]l

αt(u) = αr(u)

αt(νp.t) = νp.αt(t)

αt(p 7→ d) = p 7→ αd(d)

αt(p.ℓ) = p.ℓ

αt(p.ℓ ⇐ ς(x)t) = p.ℓ ⇐ ς(x)αt(t)

αt(let x = s in t) = let x = αt(s) in αt(t)

αt(s � t) = αt(t) �αt(s)

αt(e) = ⊙

αt(if e thens elset) = if ⊙ thenαt(s) elseαt(t)

αs(u) = αr(u)

αs(νp.a) = νp.αs(a)

αs(p 7→ d) = p 7→ αd(d)

αs(lockedp in a) = lockedp in αs(a)

αs(let x = a in b) = let x = αs(a) in αs(b)

αs([[t]]
L) = [[αt(t)]]

L

αs(a � b) = αs(a) �αs(b)

αs(if e thena elseb) = if ⊙ thenαs(a) elseαs(b)

Table 6. Abstraction functions

10 R. Barbuti, S. Cataudella, L. Tesei / Abstract Interpretation against Races

γr(x) = {x}

γr(p) = {p}

γr(⊙) = {n | n is an integer number}

γd([ℓi = ς(xi)t
♯
i

i∈1...n
]l) = {[ℓi = ς(xi)t

i∈1...n
i]l | ti ∈ γt(t

♯
i)}

γt(u) = γr(u)

γt(νp.t
♯) = {νp.t | t ∈ γt(t

♯)}

γt(p 7→ d♯) = {p 7→ d | d ∈ γd(d
♯)}

γt(p.ℓ) = {p.ℓ}

γt(p.ℓ ⇐ ς(x)t♯) = {p.ℓ ⇐ ς(x)t | t ∈ γt(t
♯)}

γt(let x = s♯ in t♯) = {let x = s in t | s ∈ γt(s
♯), t ∈ γt(t

♯)}

γt(s
♯
� t♯) = {s � t | s ∈ γt(s

♯), t ∈ γt(t
♯)}

γt(⊙) = {e | e integer expression}

γt(if ⊙ thens♯ elset♯) = {if e thens elset | s ∈ γt(s
♯), t ∈ γt(t

♯),

e integer expression}

γs(u) = γr(u)

γs(νp.a
♯) = {νp.a | a ∈ γs(a

♯)}

γs(p 7→ d♯) = {p 7→ d | d ∈ γd(d
♯)}

γs(lockedp in a♯) = {lockedp in a | a ∈ γs(a
♯)}

γs(let x = a♯ in b♯) = {let x = a in b | a ∈ γs(a
♯), b ∈ γs(b

♯)}

γs([[t
♯]]L) = {[[t]]L | t ∈ γt(t

♯)}

γs(a
♯
� b♯) = {a � b | a ∈ γs(a

♯), b ∈ γs(b
♯)}

γs(if ⊙ thena♯ elseb♯) = {if e thena elseb | a ∈ γs(a
♯), b ∈ γs(b

♯),

e integer expression}

Table 7. Concretization functions

R. Barbuti, S. Cataudella, L. Tesei / Abstract Interpretation against Races 11

Thus, structural congruence rules are still the ones in Table 3 (applied to the abstract syntax).

Abstract reduction rules are analogous to the ones defined inTable 4, the only differences
being the definitions of the rules for the if statement. The abstract rules for this statement
are given in Table 8.

if ⊙ thena♯ elseb♯ −→♯ a♯
(Red if♯1)

if ⊙ thena♯ elseb♯ −→♯ b♯
(Red if♯2)

Table 8. Abstract reduction rules

Let us note that, differently from the concrete rules, the abstract reduction of an if statement
produces two different results.

We can state the correctness of the abstract interpretationby the following results.

First we have to show thatα andγ form a Galois insertion between the concrete and abstract
domains.

Proposition 3.1. Let a♯ be an abstract statement, andS ∈ ℘(a) be a set of concrete state-
ments.αs andγs forms a Galois insertion.

That is:

αs andγs are monotonic,

S ⊆ γs(αs(S)), whereαs andγs are applied pointwise,

αs(γs(a
♯)) = a♯.

Proof:
The concrete and abstract set of statements are flat, thusαs is monotonic on these sets.
Adding a top and a bottom element does not change the property.

For each concrete statementa, we have, by the definition ofαs andγs, thata ∈ γs(αs(a)).
ThusS ⊆ γs(αs(S)) for each setS of concrete statements.

Given a concrete statements, the cases of the definitions ofαs andγs are such thats ∈
γs(a

♯) ⇒ αs(s) = a♯. Thus, for any abstract statementa♯, αs(γs(a
♯)) = a♯. ⊓⊔

Proposition 3.2. Let a andb be concrete statements, the following condition holds.

If a −→ b then there exists an abstract statementb♯ such thatαs(a) −→
♯ b♯ andb ∈ γs(b

♯).
−→ and−→♯ include the congruence rule applications which make possible the reduction.

12 R. Barbuti, S. Cataudella, L. Tesei / Abstract Interpretation against Races

Proof:
The proposition is trivially true for all the statements different from the if one. The abstract
rules for the if statement, in Table 8, make the proposition true for it as well. ⊓⊔

This proposition states that the abstract reduction correctly approximates the concrete one.
That is every concrete computation has a corresponding abstract one.

Thus, if a property is verified for all the reductions of an abstract statementαs(a) then it is
verified also fora.

As a consequence we can check, by abstract reduction, that every access to an object is done
while owning the lock to that object. This analysis corresponds to the one in [11].

By using abstract interpretation we can apply a less rigid analysis to detect races. In par-
ticular we check that, during the reduction of a statementa, no parallel accesses to an
object, referred byp, can be performed. That is a (sub)statement of the forma′ � a′′, where
a′, a′′ ∈ {[[p.ℓi]]

L1} ∪ {[[p.ℓj ⇐ ς(x)t]]L2}, is never reached.

This can be done by analyzing the abstraction ofa. Recall that we can construct a finite
transition system representing all possible computationsof αs(a). Thus, we can statically
check that the above kind of statement is never introduced inany abstract computation. If
this is true, we can conclude that it cannot be introduced in the concrete computation of
a as well. Of course, given the approximation introduced by abstract interpretation, the
vice-versa does not hold in general.

Let us state the result formally.

Definition 3.1. A statement (either concrete or abstract) israce freeiff, for all statements
b reached during the reductions,a

∗
−→ b, b doesnot contain a (sub)statement of the form

p 7→ d � b′ � b′′, whered = [ℓi = ς(xi)t
i∈(1...n)

i]l andb′, b′′ are statements in the set
{[[p.ℓi]]

L1 | i ∈ {1, . . . , n}, L1 is a set of references} ∪
{[[p.ℓj ⇐ ς(x)t]]L2 | j ∈ {1, . . . , n}, L2 is a set of references}

Note that in the previous definition
∗

−→ means the application of an arbitrary number of
reduction rules and structural congruence rules.

Proposition 3.3. Given a statementa, if αs(a) is race free, thena is race free.

Proof:
By correctness of abstract interpretation [6, 7]. ⊓⊔

Let us give a simple example. Consider the following statement a1:

a1 =
[[νp.p 7→ [ℓ = ς(x)5]◦ � let x = p.ℓ in if n thenp.ℓ else(lock p in p.ℓ � lock p in p.ℓ ⇐

ς(x)6)]]∅

αs(a1) is analogous toa1 apart from the substitution of⊙ for every integer value. The graph
of all possible abstract reductions forα(a1) is shown in Figure 1. For the sake of readability
we removed the restrictionνp and the reference statementp 7→ [ℓ = ς(x)5]◦ from the

R. Barbuti, S. Cataudella, L. Tesei / Abstract Interpretation against Races 13

[[let x = p.ℓ in if ⊙ thenp.ℓ else(lock p in p.ℓ � lock p in p.ℓ ⇐ ς(x)⊙)]]∅

let x = [[p.ℓ]]∅ in [[if ⊙ thenp.ℓ else(lock p in p.ℓ � lock p in p.ℓ ⇐ ς(x)⊙)]]∅

[[if ⊙ thenp.ℓ else(lock p in p.ℓ � lock p in p.ℓ ⇐ ς(x)⊙)]]∅

[[p.ℓ]]∅ [[lock p in p.ℓ]]∅ � [[lock p in p.ℓ ⇐ ς(x)⊙]]∅

⊙ [[p.ℓ]]{p} � [[lock p in p.ℓ ⇐ ς(x)⊙]]∅ [[lock p in p.ℓ]]∅ � [[p.ℓ ⇐ ς(x)⊙]]{p}

⊙ � [[p.ℓ ⇐ ς(x)⊙]]{p} [[p.ℓ]]{p} � p

⊙ � p ⊙ � p

❄

❄

❄❄

❄ ❄❄

❄❄

❄❄

Figure 1. Abstract reduction graph forαs(a1)

figure. Moreover, because it is clear from the context, we removed the word “locked” from
the terms when a lock is acquired. The structural congruencerules are applied implicitly.

It is easy to check that, in the abstract computation graph, all the statements are race free.
Thus we can conclude that the concrete computation is race free as well.

Let us remark that the statementa1 is not certified by current type-based analyses, because
the object referred byp is accessed, in two cases, without locking it. However such accesses
are safe because they are performed without any other accesscomposed in parallel.

4. Conclusions

In this paper we have applied abstract interpretation techniques to a concurrent object cal-
culus for checking the absence of race conditions.

We have shown that the use of such techniques is more flexible of type-based ones. In
particular abstract interpretation allows to certify, as race free, programs which are not
certified by current type techniques.

The use of abstract interpretation is based on an extension of a concurrent object calculus
which consists in annotating terms with sets of locks. This extension is simple and it does
not complicate the semantics of the calculus itself.

The analysis we defined can be the base for the certification ofreal object oriented programs.

References

[1] Martı́n Abadi, and Luca Cardelli.A Theory of Objects. Springer, 1996.

14 R. Barbuti, S. Cataudella, L. Tesei / Abstract Interpretation against Races

[2] Jonathan Aldrich, Craig Chambers, Emin Gün Sirer, and Susan J. Eggers. Static Analyses for
Eliminating Unnecessary Synchronization from Java Programs. Static Analysis Symposium
(SAS) 1999. 19-38

[3] Juan Bicarregui, Kevin Lano, and T. S. E. Maibaum. Formalizing Object-Oriented Models
in the Object Calculus. ECOOP Workshops 1997, Lecture Notesin Computer Science 1357,
Springer, 1998. 155-160

[4] Chandrasekhar Boyapati, and Martin C. Rinard: A Parameterized Type System for Race-Free
Java Programs. ACM SIGPLAN Conference on Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA), SIGPLAN Notices 36(11),2001. 56-69

[5] Chandrasekhar Boyapati, Robert Lee, and Martin C. Rinard. Ownership types for safe pro-
gramming: preventing data races and deadlocks. ACM SIGPLANConference on Object-
Oriented Programming Systems, Languages and Applications(OOPSLA), SIGPLAN Notices
37(11), 2002. 211-230

[6] Patrick Cousot, and Radhia Cousot. Abstract Interpretation Frameworks.Journal of Logic and
Computation, 2, 1992. 511-547

[7] Patrick Cousot. Abstract Interpretation.ACM Computing Surveys, 28, 1996. 324-328

[8] Jos Luiz Fiadeiro, and T. S. E. Maibaum. Describing, Structuring and Implementing Objects.
Foundations of Object Oriented Languages. Lecture Notes inComputer Science 489, Springer,
1991.

[9] Kathleen Fisher, Furio Honsell, and John C. Mitchell. A lambda Calculus of Objects and
Method Specialization.Nordic Journal of Computing1, 1994. 3-37

[10] Cormac Flanagan, and Martı́n Abadi. Types for Safe Locking. 8th European Symposium on
Programming (ESOP), Lecture Notes in Computer Science 1576, Springer, 1999. 91-108

[11] Cormac Flanagan, and Martı́n Abadi. Object Types against Races. 10th International Confer-
ence on Concurrency Theory (CONCUR), Lecture Notes in Computer Science 1664, Springer,
1999. 288-303

[12] James Gosling, William N. Joy, and Guy L. Steele Jr.The Java Language Specification.
Addison-Wesley, 1996.

[13] Andrew D. Gordon, and Paul D. Hankin. A Concurrent Object Calculus: Reduction and Typ-
ing. Electronic Notes in Theoretical Computer Science (ENTCS), 16, 1998.

[14] Kohei Honda,and Mario Tokoro. An Object Calculus for Asynchronous Communication.
ECOOP 1991. Lecture Notes in Computer Science 512, Springer, 1991. 133-147

[15] Robert H. B. Netzer, and Barton P. Miller. What Are Race Conditions? Some Issues and
Formalizations.ACM Letters on Programming Languages and Systems (LOPLAS), 1, 1992.
74-88

