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Abstract

Several deterministically/stochastically timed process calculi have been proposed in the literature that, apart
from their synchronization mechanism, mainly differ for the way in which actions and delays are represented.
In particular, a distinction is made between integrated-time calculi, in which actions are durational, and
orthogonal-time calculi, in which actions are instantaneous and delays are expressed separately. In a previous
work on deterministic time, the two approaches have been shown to be reconcilable through an encoding
from the integrated-time calculus CIPA to the orthogonal-time calculus TCCS, which preserves strong timed
bisimilarity under certain conditions. In this paper, the picture is completed by first defining a reverse
encoding from TCCS to CIPA, which requires slight modifications to both calculi and is shown to preserve
only weak timed bisimilarity under conditions tighter than those for the direct encoding. Stochastic time is
then addressed, by exhibiting an encoding from the integrated-time calculus MTIPP to the orthogonal-time
calculus IML, together with a reverse encoding requiring slight modifications only to the former calculus,
with both encodings being shown to preserve strong Markovian bisimilarity under suitable conditions. All
the four encodings rely on the assumption that action execution is urgent. Variants are finally discussed in
which action execution is delayable, in the sense that an enabled action can let time advance before starting
its execution, or only the execution of internal actions is urgent, which is known as maximal progress.
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1. Introduction

Computing systems are characterized not only by their functional behavior, but also by their quantitative
features. In particular, timing aspects play a fundamental role, as they describe the temporal evolution
of system activities. This is especially true for real-time systems, which are considered correct only if
the execution of their activities fulfills certain temporal constraints, as well as shared-resource systems, in
which resource contention determines stochastic fluctuations of the service level measured through suitable
performance indices. On the modeling side, time is expressed through fixed numbers in the case of real-time
systems, yielding a deterministic representation of time, or random variables in the case of shared-resource
systems, originating a stochastic representation of time. In the following, we refer to abstract time, in the
sense that we use time as a parameter for expressing constraints about instants of occurrences of actions.
Unlike physical time, abstract time enables simplifications that allow tractable models to be obtained.

Many timed process calculi have appeared in the literature starting from the late 1980’s. Among those
with deterministic delays, we mention timed CSP [35], temporal CCS [29], timed CCS [39], real-time ACP [2],
urgent LOTOS [10], CIPA [1], TPL [20], ATP [32], TIC [34], and PAFAS [14]. As observed in [31, 38, 12],
these calculi differ on the basis of a number of time-related options, some of which are recalled below:

• Durationless actions versus durational actions. In the first case, actions are instantaneous events
and time passes in between them; hence, functional behavior and time are orthogonal. In the second
case, every action takes a certain amount of time to be performed and time passes only due to action
execution; hence, functional behavior and time are integrated.
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• Relative time versus absolute time. Assume that timestamps are associated with the events observed
during system execution. In the first case, each timestamp refers to the time instant of the previous
observation. In the second case, all timestamps refer to the starting time of the system execution.

• Global clock versus local clocks. In the first case, there is a single clock that governs time passing.
In the second case, there are several clocks associated with the various system parts, which elapse
independent of each other although they contribute to define a unique notion of global time.

Moreover, for these deterministically timed process calculi there are several different interpretations of
action execution, in terms of whether and when the execution can be delayed, such as:

• Eagerness: actions must be performed as soon as they become enabled, i.e., without any delay, thereby
implying that their execution is urgent.

• Laziness: after getting enabled, actions can be delayed arbitrarily long before they are executed.

• Maximal progress: enabled actions can be delayed arbitrarily long unless they are independent of the
external environment, in which case their execution is urgent.

A comparative study was conducted in [12] by one of the authors, which focusses on two different
deterministically timed process calculi obtained by suitably combining the time-related options above. One
of the two calculi, TCCS [29], is inspired by the two-phase functioning principle, according to which actions
are durationless, time is relative, and there is a single global clock. In contrast, the other calculus, CIPA [1],
is inspired by the one-phase functioning principle, according to which actions are durational, time is absolute,
and several local clocks are present. The two considered principles are among the richest combinations of
time features [31, 38, 12], thus allowing for a deep investigation of their relative expressiveness, and the two
considered calculi are well-known and paradigmatic instances of the two principles themselves.

In [12], it was shown that the multiple choices concerned with the time-related options are not irrecon-
cilable under the various action execution interpretations. More precisely, a timed-bisimilarity-preserving
encoding of CIPA into TCCS was developed for each action execution interpretation. Preservation turned
out to depend on certain conditions under action eagerness and to be unconditional under action laziness
and maximal progress, thus revealing when the two process calculi have a different expressive power.

In this paper, we complete the previous expressiveness study in two directions. First of all, we consider
a reverse encoding from TCCS to CIPA under action eagerness. As pointed out at the end of [12], several
issues need to be addressed before such a reverse encoding can be established. Our contribution consists
of providing an answer to each of the various issues, which will lead to slight modifications of both calculi.
The reverse encoding is proved to be fully abstract with respect to weak timed bisimilarity, as opposed to
the direct one demonstrated to be fully abstract with respect to strong timed bisimilarity in [12].

The second direction that we explore is concerned with process calculi extended with stochastic delays,
such as for instance MTIPP [18, 22], PEPA [25], MPA [11], EMPAgr [8, 5], Sπ [33], IML [21], and PIOA [36].
In these calculi, delays are no longer expressed through nonnegative numbers, but through nonnegative
random variables. The latter typically follow exponential distributions, each characterized by a positive real
number called rate, so that the underlying stochastic processes turn out to be continuous-time Markov chains.
These models are mathematically tractable [37] and fit well with the interleaving view of concurrency thanks
to the memoryless property of the considered distributions.

The time-related options and action execution interpretations discussed for deterministically timed calculi
apply to a large extent also to such stochastically timed calculi. This is especially true for the difference
between durationless and durational actions. In contrast, the distinction between relative and absolute time
and the concept of clock are not so important in a Markovian framework due to the memoryless property
of exponential distributions, which establishes that the residual time to the termination of an event follows
the same exponential distribution as the overall duration of the event.

However, there is a fundamental difference between deterministically timed calculi and stochastically
timed calculi in terms of choices among alternative behaviors. In the former calculi, all choices are nonde-
terministic precisely as in classical process calculi, because time passing cannot affect choices according to
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time determinism. In the latter calculi, choices can instead be probabilistic when they are based on delays or
durational actions, because in that case the race policy is adopted, which means that the event sampling the
least duration is the one that takes place. For example, in an orthogonal-time setting, the deterministically
timed process (t) . P1 + (t) . P2 – where + denotes the alternative composition operator – can let t time
units pass and then evolves into P1 +P2 without resolving the choice, while the stochastically timed process
(λ1) . P1 + (λ2) . P2 – where λ1 and λ2 are the rates of two exponentially distributed delays – evolves into
either P1 or P2 with probabilities λ1

λ1+λ2
and λ2

λ1+λ2
, respectively.

This has an impact on the expressiveness of Markovian process calculi. The orthogonal-time ones are
more expressive than the integrated-time ones, because the former can represent both action-based nonde-
terministic choices and time-based probabilistic choices, whereas the latter can represent only probabilistic
choices based on action durations. In turn, this has an impact on the expressiveness of the synchronization
discipline adopted in the considered calculi. Indeed, in the orthogonal-time case the time to the synchro-
nization of two actions can be naturally described as the maximum of two exponentially distributed random
variables, expressed as the interleaving of the two corresponding rates, whereas in the integrated-time case
the duration of the synchronization of two exponentially timed actions can only be assumed to be expo-
nentially distributed, with rate given by the application of an associative and commutative operation to
the two original rates. This difference in expressiveness is compensated for by the fact that the states of
the continuous-time Markov chain underlying an integrated-time process are in one-to-one correspondence
with the states of the process itself – which is appreciated by many performance modelers – while a suitable
algorithm has to be applied to derive the Markov chain in the case of an orthogonal-time process [21].

In spite of the different expressiveness they induce, we show that durationless and durational actions
are reconcilable in a Markovian setting too. This is accomplished by concentrating on the orthogonal-time
calculus IML and the integrated-time calculus MTIPP. For these two well-known exponentially timed calculi,
we define a direct encoding and a reverse encoding under action eagerness, which are both proved to preserve
strong Markovian bisimilarity under suitable conditions.

The paper, which is a revised, extended, and integrated version of [6] and [3], is organized as follows.
In Sect. 2, we present syntax, operational semantics, and bisimilarity for TCCS, CIPA, IML, and MTIPP.
In Sect. 3, we recall from [12] the direct encoding from CIPA to TCCS under action eagerness, together with
the corresponding full abstraction result with respect to strong timed bisimilarity. In Sects. 4, 5, and 6, we
respectively provide, under action eagerness, the reverse encoding from TCCS to CIPA and the direct and
reverse encodings between MTIPP and IML and show the related full abstraction results with respect to
bisimulation semantics. In Sect. 7, we discuss variants of the encodings in which action laziness or maximal
progress is assumed in place of action eagerness. Finally, in Sect. 8 we provide some concluding remarks.

2. Timed Process Calculi: Syntax, Operational Semantics, and Bisimulation Equivalence

In this section, after introducing some notation, we recall syntax, operational semantics, and strong/weak
bisimilarity for the two timed process languages with deterministic delays (TCCS and CIPA) and the two
timed process languages with exponentially distributed delays (IML and MTIPP) considered in this paper.

2.1. Preliminaries for Calculi with Deterministic Time

Deterministically timed process calculi adopt a CCS-like, binary synchronization mechanism [28]. In this
setting, we denote by A a nonempty set of visible actions – ranged over by a, b – and by Ā = {ā | a ∈ A} the
set of corresponding coactions, such that ¯̄a = a for all a ∈ A. We use Act = A ∪ Ā ∪ {τ} to indicate the set
of all actions – ranged over by α, β – where τ is the invisible action resulting from the synchronization of a
visible action with its coaction. We then let Rel be a set of action relabeling functions; each such function
ϕ : Act → Act satisfies ϕ(τ) = τ as well as ϕ(a) ∈ Act \ {τ} and ϕ(a) = ϕ(ā) for all a ∈ Act \ {τ}.

We denote by T = (T,�,v) a time domain such that T ∩ Act = ∅, equipped with a commutative and
associative operation � with neutral element 0T and a total order relation v satisfying t1 v t2 iff there exists
t′ ∈ T such that t1 � t′ = t2; typical choices are (N,+,≤) and (R≥0,+,≤). We recall the following laws:

• If process P can evolve to both P ′1 and P ′2 in the same time t ∈ T , then P ′1 = P ′2 (time determinism).
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• P can evolve to P ′ in time t′ ∈ T and P ′ can evolve to P ′′ in time t′′ ∈ T iff P can directly evolve
to P ′′ in time t = t′ � t′′, with P = P ′ when t′ = 0T and P ′ = P ′′ when t′′ = 0T (time additivity).

2.2. TCCS: Durationless Actions and Deterministic Delays

The process calculus TCCS [29] features instantaneous actions separated from fixed delays, motivated
by the authors of that work on the basis of the fact that computation involves energy changes and that such
changes and time cannot be measured simultaneously by a result of quantum mechanics. As in [12], from
the syntax of TCCS we leave out the idling operator δ and the weak choice operator ⊕ because they have
no counterpart in CIPA. In the following, we assume action execution to be urgent and we denote by Var a
nonempty set of process variables – ranged over by X,Y – whose occurrences can be free or bound by the
recursion constructor “rec”.

Definition 2.1. The set PTCCS of TCCS process terms is generated by the following syntax:

P ::= 0 stopped process
| α . P instantaneous action prefix
| (t) . P fixed delay prefix
| P + P alternative composition
| P | P CCS-like parallel composition
| P \L restriction
| P [ϕ] relabeling
| X process variable
| recX : P recursion

where α ∈ Act , t ∈ N>0, L ⊆ A, ϕ ∈ Rel , and X ∈ Var . We denote by PTCCS the set of closed and guarded
process terms of PTCCS.

Process 0 can neither proceed with any action, nor proceed through time. Process α . P can perform
the instantaneous action α and then evolves into process P ; since the execution of α is urgent, time cannot
progress before α is performed. Process (t) . P evolves into process P after a delay equal to t.

Process P1 +P2 represents a nondeterministic choice between processes P1 and P2, with the choice being
resolved depending on whether an action of P1 or P2 is executed first. According to time determinism, time
passing cannot resolve choices, in the sense that any initial passage of time common to P1 and P2 must
be allowed without making the choice. Process P1 | P2 describes the parallel composition of processes P1

and P2, where any two complementary actions may synchronize thereby resulting in a τ -action. Also in this
case, any initial passage of time common to P1 and P2 must be permitted.

Process P \L behaves as process P except for actions belonging to the restriction set L ∪ L̄, whose
execution is forbidden; this is useful to force synchronizations between complementary actions. Process
P [ϕ] behaves as process P , with the difference that every action is transformed via ϕ upon execution; this
allows processes with different actions to communicate. Finally, recX : P represents a recursive process,
which behaves as process P in which every free occurrence of X is replaced by recX : P itself; the resulting
process will be denoted by P{recX : P ↪→ X}.

Following [29], with every PTCCS process term is associated a labeled transition system defined according
to Table 1. States correspond to terms, while transitions are labeled with actions or nonzero delays. The
action transition relation −−→ on the left represents the functional behavior. The delay transition relation
−; on the right represents the timing behavior according to action eagerness (no delay rule for action
prefix), time additivity (second and third rules), and time determinism (fourth and fifth rules); the second
rule is necessary for the applicability of the fourth and fifth ones, while the third rule is necessary for
achieving desirable identifications in the forthcoming equivalences. The presence of two distinct transition
relations emphasizes that, in TCCS, action execution is orthogonal to time passing.

Strong bisimilarity for TCCS was defined in [29] by extending Milner’s strong bisimilarity for purely
nondeterministic processes [28].
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α . P
α
−−→ P (t) . P

t
−; P

P1

α
−−→ P ′1

P1 + P2

α
−−→ P ′1

P2

α
−−→ P ′2

P1 + P2

α
−−→ P ′2 (t′ + t′′) . P

t′

−; (t′′) . P

P
t′′

−; P ′

(t′) . P
t′+t′′

−; P ′

P1

α
−−→ P ′1

P1 | P2

α
−−→ P ′1 | P2

P2

α
−−→ P ′2

P1 | P2

α
−−→ P1 | P ′2

P1

t
−; P ′1 P2

t
−; P ′2

P1 + P2

t
−; P ′1 + P ′2

P1

a
−−→ P ′1 P2

ā
−−→ P ′2

P1 | P2

τ
−−→ P ′1 | P ′2

P1

t
−; P ′1 P2

t
−; P ′2

P1 | P2

t
−; P ′1 | P ′2

P
α
−−→ P ′ α /∈ L ∪ L̄

P \L
α
−−→ P ′ \L

P
t
−; P ′

P \L
t
−; P ′ \L

P
α
−−→ P ′

P [ϕ]
ϕ(α)
−−→ P ′ [ϕ]

P
t
−; P ′

P [ϕ]
t
−; P ′ [ϕ]

P{recX : P ↪→ X}
α
−−→ P ′

recX : P
α
−−→ P ′

P{recX : P ↪→ X}
t
−; P ′

recX : P
t
−; P ′

Table 1: Structural operational semantic rules for TCCS

Definition 2.2. A symmetric relation B over PTCCS is a strong timed bisimulation iff, whenever (P1,P2)∈B,
then for all actions α ∈ Act and delays t ∈ N>0 it holds that:

• For each P1

α
−−→ P ′1 there exists P2

α
−−→ P ′2 such that (P ′1, P

′
2) ∈ B.

• For each P1

t
−; P ′1 there exists P2

t
−; P ′2 such that (P ′1, P

′
2) ∈ B.

We write P1 ∼TCCS P2 to denote that (P1, P2) is contained in a strong timed bisimulation.

A notion of weak bisimilarity for TCCS was subsequently studied in [30]. It is an extension of
Milner’s weak bisimilarity [28] that is capable of summing up delays while abstracting from τ -actions.
For a smoother comparison with the weak bisimilarity for CIPA, and hence an appropriate formalization
of the full abstraction result for the reverse encoding, we present the weak bisimilarity for TCCS in the
so-called delay bisimulation style, by leaving out trailing τ -actions. We thus define TCCS weak transitions
as follows:

• ==⇒ = (
τ
−−→)∗.

• a
==⇒ = ==⇒

a
−−→ for a ∈ Act \ {τ}.

• α̂
==⇒ =

{
==⇒ if α = τ
α

==⇒ if α 6= τ
.

• t
==⇒ = ==⇒

t1
−; · · ·==⇒

tn
−; where n ∈ N≥1, ti ∈ N>0 for 1 ≤ i ≤ n, and t =

∑
1≤i≤n ti.
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Definition 2.3. A symmetric relation B over PTCCS is a weak timed bisimulation iff, whenever (P1, P2) ∈ B,
then for all actions α ∈ Act and delays t ∈ N>0 it holds that:

• For each P1

α
−−→ P ′1 there exists P2

α̂
==⇒ P ′2 such that (P ′1, P

′
2) ∈ B.

• For each P1

t
−; P ′1 there exists P2

t
==⇒ P ′2 such that (P ′1, P

′
2) ∈ B.

We write P1 ≈TCCS P2 to denote that (P1, P2) is contained in a weak timed bisimulation.

2.3. CIPA: Deterministically Timed Actions

The process calculus CIPA [1] associates fixed durations with actions, because the authors of that work
wanted to show that concurrency information can be captured purely through timing while retaining the
advantages of the classic interleaving approach, such as a simpler semantic model and the existence of an
expansion law. As in [12], we add the relabeling operator to the syntax of CIPA. Like for TCCS, we assume
action execution to be urgent and we make use of Var .

Definition 2.4. The set PCIPA of CIPA process terms is generated by the following syntax:

Q ::= nil inactive process
| a .Q durational action prefix
| wait t .Q fixed waiting prefix
| Q+Q alternative composition
| Q | Q CCS-like parallel composition
| Q \L restriction
| Q [ϕ] relabeling
| X process variable
| recX : Q recursion

where a ∈ Act \ {τ}, t ∈ N>0, L ⊆ A, ϕ ∈ Rel , X ∈ Var , and the duration of each visible action is
established by function ∆ : (Act \{τ})→ N>0 such that ∆(ā) = ∆(a). We denote by PCIPA the set of closed
and guarded process terms of PCIPA.

Process nil cannot proceed with any action, but can let time pass unlike process 0 of TCCS. Process
a .Q can perform the eager action a and evolves into process Q after ∆(a) time units; note that all the
occurrences of a visible action have the same duration. Process wait t .Q waits for t time units and then
becomes process Q; observe that different occurrences of the waiting prefix may have different durations.
We also point out that in Q1 +Q2 and Q1 | Q2 action durations are not considered at all to determine which
action is executed first, i.e., the choice is nondeterministic rather than based on a race.

All the other operators work as in TCCS, with three differences. There are no common initial passages
of time to deal with for alternative and parallel composition. Any pair of actions a and ā can synchronize
only if they start at the same time, yielding a τ -action with the same duration as the two original actions.
Each relabeling function ϕ must preserve durations, i.e., ∆(ϕ(a)) = ∆(a) for all a ∈ Act \ {τ}.

Following [1], in the labeled transition system associated with a PCIPA process term, the set of states
correspond to process terms augmented with local clocks, so to keep track of the time elapsed in the various
sequential subprocesses. The extended syntax for the set KP of augmented process terms – with KP denot-
ing the set of closed and guarded elements of KP – is as follows:

K ::= k ⇒ nil | k ⇒ a .Q | k ⇒ wait t .Q | k ⇒ X | k ⇒ recX : Q | K +K | K |K | K \L | K [ϕ]
We use the shorthand k ⇒ Q to indicate that the clock value k ∈ N is distributed over all subprocesses of
Q ∈ PCIPA according to the following laws:

k ⇒ (Q1 +Q2) = (k ⇒ Q1) + (k ⇒ Q2)
k ⇒ (Q1 | Q2) = (k ⇒ Q1) | (k ⇒ Q2)
k ⇒ (Q \L) = (k ⇒ Q) \L
k ⇒ (Q [ϕ]) = (k ⇒ Q) [ϕ]
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k ⇒ (a .Q)
a@k
−−→
∆(a)

(k + ∆(a))⇒ Q k ⇒ (wait t .Q)
τ@k
−−→
t

(k + t)⇒ Q

K1

α@k
−−→
t
K ′1 ¬(K2

α′@k′

−−→
t′

K ′2 ∧ k′ < k)

K1 +K2

α@k
−−→
t
K ′1

K2

α@k
−−→
t
K ′2 ¬(K1

α′@k′

−−→
t′

K ′1 ∧ k′ < k)

K1 +K2

α@k
−−→
t
K ′2

K1

α@k
−−→
t
K ′1 ¬(K2

α′@k′

−−→
t′

K ′2 ∧ k′ < k)

K1 | K2

α@k
−−→
t
K ′1 | K2

K2

α@k
−−→
t
K ′2 ¬(K1

α′@k′

−−→
t′

K ′1 ∧ k′ < k)

K1 | K2

α@k
−−→
t
K1 | K ′2

K1

a@k
−−→
∆(a)

K ′1 K2

ā@k
−−→
∆(a)

K ′2

K1 | K2

τ@k
−−→
∆(a)

K ′1 | K ′2

K
α@k
−−→
t
K ′ α /∈ L ∪ L̄

K \L
α@k
−−→
t
K ′ \L

K
α@k
−−→
t
K ′

K [ϕ]
ϕ(α)@k
−−→
t

K ′ [ϕ]

k ⇒ (Q{recX : Q ↪→ X})
α@k
−−→
t
K ′

k ⇒ (recX : Q)
α@k
−−→
t
K ′

Table 2: Structural operational semantic rules for CIPA

In this setting, any transition is of the form K
α@k
−−→
t
K ′, meaning that K ∈ KP performs an action of

name α ∈ Act that starts at time k ∈ N and has duration t ∈ N>0, after which it evolves to K ′ ∈ KP.
The transition relation is defined in Table 2, where neither time determinism nor time additivity is taken
into account. Negative premises are present as in [12]. Those in the rules for alternative composition enforce
action eagerness. Those in the rules for parallel composition avoid the generation of ill-timed paths, i.e.,
computations along which the starting time of some transitions is lower than that of preceding transitions.

Strong bisimilarity for CIPA can be defined in a way analogous to ∼TCCS.

Definition 2.5. A symmetric relation B over KP is a strong timed bisimulation iff, whenever (K1,K2) ∈ B,
then for all actions α ∈ Act , starting times k ∈ N, and durations t ∈ N>0 it holds that:

• For each K1

α@k
−−→
t
K ′1 there exists K2

α@k
−−→
t
K ′2 such that (K ′1,K

′
2) ∈ B.

We write K1 ∼CIPA K2 to denote that (K1,K2) is contained in a strong timed bisimulation.

A notion of weak bisimilarity for CIPA capable of summing up consecutive waitings was studied in [1].
It was developed in the branching style of Van Glabbeek and Weijland [16]. To make it comparable with
≈TCCS, we present the weak bisimilarity for CIPA in the same delay bisimulation style used for ≈TCCS, by
removing the branching constraint according to which the states traversed by a sequence of τ -actions should
be equivalent to each other. We thus define CIPA weak transitions as follows:

• ==⇒ =
τ@k1

−−→
t1
· · ·

τ@kn
−−→
tn

for n ∈ N, where k1 ≤ · · · ≤ kn due to the well timedness of computations.

• a@k
==⇒
t

= ==⇒
a@k
−−→
t

for a ∈ Act \ {τ}, where k is ≥ than the starting time of the last transition in ==⇒.
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• α̂@k
==⇒
t

=

{
==⇒ if α = τ
α@k
==⇒
t

if α 6= τ
.

Definition 2.6. A symmetric relation B over KP is a weak timed bisimulation iff, whenever (K1,K2) ∈ B,
then for all actions α ∈ Act , starting times k ∈ N, and durations t ∈ N>0 it holds that:

• For each K1

α@k
−−→
t
K ′1 there exists K2

α̂@k
==⇒
t
K ′2 such that (K ′1,K

′
2) ∈ B.

We write K1 ≈CIPA K2 to denote that (K1,K2) is contained in a weak timed bisimulation.

Notice that, for α = τ , process K2 may simply idle or perform a sequence of τ -actions with an arbitrary
duration because of the definition of ==⇒, in which timing information is lost. As a consequence, in both
cases, on K2 side there may not be any weak τ -transition starting at time k and having duration t that
matches the τ -transition on K1 side. However, in order for the equivalence to hold, possible subsequent
visible actions must start their execution at the same time in both processes.

Finally, we say that Q1, Q2 ∈ PCIPA are related by ∼CIPA or ≈CIPA iff so are 0⇒ Q1, 0⇒ Q2 ∈ KP.

2.4. Preliminaries for Calculi with Stochastic Time

Stochastically timed process calculi adopt a CSP-like, multiway synchronization mechanism [26], such
that only identical actions can synchronize. In this setting, we denote by A a nonempty set of visible actions
– ranged over by a, b – and we use Act = A ∪ {τ} to indicate the set of all actions – ranged over by α, β –
where τ is the invisible action. We then let Rel be a set of action relabeling functions; each such function
ϕ : Act → Act satisfies ϕ(τ) = τ as well as ϕ(a) ∈ Act \ {τ} for all a ∈ Act \ {τ}.

Time is continuous and described by elements of R>0 – ranged over by λ, µ – each of which is called rate
and uniquely identifies an exponentially distributed random variable. A variable Vλ of this kind is defined
according to the probability distribution function Pr{Vλ ≤ t} = 1− e−λ·t for all t ∈ R>0, which is the only
continuous distribution enjoying the memoryless property, i.e., Pr{Vλ ≤ t + t′ | Vλ > t′} = Pr{Vλ ≤ t} for
all t, t′ ∈ R>0. The expected value of Vλ is 1/λ, while its variance is 1/λ2.

Unlike the deterministic-time setting, where time does not resolve choices, here the race policy is adopted.
This means that, whenever several activities are taking place, the one that terminates first is the one that
samples the least completion time from the associated exponentially distributed random variable, with the
distributions of the residual time to completion of the other activities being equal to the corresponding
original distributions by virtue of the memoryless property. If Vλ1

, . . . , Vλn
are the considered random

variables, enforcing the race policy in the state in which those activities start their execution implies that:

• The state sojourn time is given by the exponentially distributed random variable min1≤i≤n Vλi
=

V∑
1≤i≤n λi

, hence the expected sojourn time is 1/
∑

1≤i≤n λi.

• The execution probability of activity j, i.e., the probability that it terminates first, is λj/
∑

1≤i≤n λi.

2.5. MTIPP: Exponentially Timed Actions

The process calculus MTIPP [18, 22] associates exponentially distributed durations with actions, so to
support performance evaluation via the solution of continuous-time Markov chain models [37] and, at the
same time, exploit the memoryless property of exponential distributions to fit well with the interleaving
view of concurrency. As for deterministically timed calculi, we assume action execution to be urgent and
we denote by Var a nonempty set of process variables – ranged over by X,Y – whose occurrences can be
free or bound by the recursion constructor “rec”.
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<α, λ> .G
α,λ
−−→G

G1

α,λ
−−→G′1

G1 +G2

α,λ
−−→G′1

G2

α,λ
−−→G′2

G1 +G2

α,λ
−−→G′2

G1

α,λ
−−→G′1 α /∈ S

G1 ‖S G2

α,λ
−−→G′1 ‖S G2

G2

α,λ
−−→G′2 α /∈ S

G1 ‖S G2

α,λ
−−→G1 ‖S G′2

G1

α,λ1

−−→G′1 G2

α,λ2

−−→G′2 α ∈ S

G1 ‖S G2

α,λ1·λ2

−−→ G′1 ‖S G′2

G
α,λ
−−→G′ α /∈ H

G/H
α,λ
−−→G′ /H

G
α,λ
−−→G′ α ∈ H

G/H
τ,λ
−−→G′ /H

G
α,λ
−−→G′

G [ϕ]
ϕ(α),λ
−−→ G′ [ϕ]

G{recX : G ↪→ X}
α,λ
−−→G′

recX : G
α,λ
−−→G′

Table 3: Structural operational semantic rules for MTIPP

Definition 2.7. The set PMTIPP of MTIPP process terms is generated by the following syntax:

G ::= 0 inactive process
| <α, λ> .G exponentially timed action prefix
| G+G alternative composition
| G ‖S G CSP-like parallel composition
| G/H hiding
| G [ϕ] relabeling
| X process variable
| recX : G recursion

where α ∈ Act , λ ∈ R>0, S,H ⊆ Act \ {τ}, ϕ ∈ Rel , and X ∈ Var . We denote by PMTIPP the set of closed
and guarded process terms of PMTIPP.

Process 0 cannot perform any action. Process <α, λ> .G can perform the eager action α at rate λ and
then evolves into process G; note that different occurrences of the same action may have different rates.

Process G1 + G2 represents a rate-based probabilistic choice between G1 and G2 governed by the race
policy, hence each action enabled in G1 or G2 has an execution probability proportional to its rate. Process
G1 ‖S G2 describes the parallel composition of processes G1 and G2, where only occurrences of the same
visible action belonging to the synchronization set S can synchronize, and generate another occurrence of
that action whose rate is the product of the rates of the two original occurrences (see [24] for an overview
of rate synchronization policies). Also parallel composition is subject to the race policy.

Process G/H behaves as process G except for actions in the hiding set H, which become τ when they
are executed; this is useful for preventing synchronizations between identical visible actions. Process G [ϕ]
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behaves as process G, with the difference that every action is transformed via ϕ upon execution; this allows
processes with different actions to communicate. Finally, recX : G represents a recursive process, which
behaves as process G in which every free occurrence of X is replaced by recX : G itself; the resulting process
will be denoted by G{recX : G ↪→ X}.

Following [18, 22], with every PMTIPP process term is associated a labeled transition system defined
according to Table 3, in which all the possible ways of deriving a transition have to be taken into account.
The reason is that, e.g., process <α, λ> .G+<α, λ> .G must have two outgoing α-transitions with rate λ –
not just one as it would be in a deterministically timed setting – so that the corresponding expected sojourn
time is 1/(2 · λ). The interested reader is referred to [15] for a complete treatment of this issue.

Strong bisimilarity for MTIPP was defined in [22] by extending Larsen and Skou’s strong bisimilarity for
probabilistic processes [27] (weak bisimilarity was later defined in [4]). As a preliminary step, we introduce
the action exit rate of a process G ∈ PMTIPP with respect to action α ∈ Act and destination process class
C ⊆ PMTIPP by letting:

ratea(G,α, C) =
∑
{|λ ∈ R>0 | ∃G′ ∈ C. G

α,λ
−−→G′ |}

where {| and |} are multiset delimiters and the summation is taken to be zero if the multiset is empty.

Definition 2.8. An equivalence relation B over PMTIPP is a strong Markovian bisimulation iff, whenever
(G1, G2) ∈ B, then for all actions α ∈ Act and equivalence classes C ∈ PMTIPP/B it holds that:

ratea(G1, α, C) = ratea(G2, α, C)
We write G1 ∼MTIPP G2 to denote that (G1, G2) is contained in a strong Markovian bisimulation.

2.6. IML: Durationless Actions and Exponential Delays

The process calculus IML [21] features instantaneous actions separated from exponentially distributed
delays, taking inspiration from previous calculi such as those of [29, 19] in which quantitative aspects are
orthogonal to functional behavior. The aim of the author was that of supporting not only performance
evaluation as in MTIPP, but also nondeterminism intended as implementation/scheduling freedom or lack
of information. Like for MTIPP, we assume action execution to be urgent and we make use of Var .

Definition 2.9. The set PIML of IML process terms is generated by the following syntax:

F ::= 0 inactive process
| α . F instantaneous action prefix
| (λ) . F exponential delay prefix
| F + F alternative composition
| F ‖S F CSP-like parallel composition
| F /H hiding
| F [ϕ] relabeling
| X process variable
| recX : F recursion

where α ∈ Act , λ ∈ R>0, S,H ⊆ Act \ {τ}, ϕ ∈ Rel , and X ∈ Var . We denote by PIML the set of closed
and guarded process terms of PIML.

Process 0 cannot perform any action as in MTIPP. Process α . F can perform the instantaneous action α
and then evolves into process F . Process (λ) . F evolves into process F after a delay sampled from an
exponentially distributed random variable of rate λ.

All the other operators work as in MTIPP, with two differences. In the case of alternative and parallel
composition, the choice among actions is nondeterministic, while the choice among exponential delays is
governed by the race policy. No synchronization is possible for exponential delays, hence they can only
interleave; this enables the description of the time to the beginning of the execution of an action as the
maximum of several exponentially distributed random variables (which is not exponentially distributed,
as opposed to the minimum of the same variables).
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α . F
α
−−→ F (λ) . F

λ
−; F

F1

α
−−→ F ′1

F1 + F2

α
−−→ F ′1

F2

α
−−→ F ′2

F1 + F2

α
−−→ F ′2

F1

λ
−; F ′1

F1 + F2

λ
−; F ′1

F2

λ
−; F ′2

F1 + F2

λ
−; F ′2

F1

α
−−→ F ′1 α /∈ S

F1 ‖S F2

α
−−→ F ′1 ‖S F2

F2

α
−−→ F ′2 α /∈ S

F1 ‖S F2

α
−−→ F1 ‖S F ′2

F1

λ
−; F ′1

F1 ‖S F2

λ
−; F ′1 ‖S F2

F2

λ
−; F ′2

F1 ‖S F2

λ
−; F1 ‖S F ′2

F1

α
−−→ F ′1 F2

α
−−→ F ′2 α ∈ S

F1 ‖S F2

α
−−→ F ′1 ‖S F ′2

F
α
−−→ F ′ α /∈ H

F /H
α
−−→ F ′ /H

F
α
−−→ F ′ α ∈ H

F /H
τ
−−→ F ′ /H

F
λ
−; F ′

F /H
λ
−; F ′ /L

F
α
−−→ F ′

F [ϕ]
ϕ(α)
−−→ F ′ [ϕ]

F
λ
−; F ′

F [ϕ]
λ
−; F ′ [ϕ]

F{recX : F ↪→ X}
α
−−→ F ′

recX : F
α
−−→ F ′

F{recX : F ↪→ X}
λ
−; F ′

recX : F
λ
−; F ′

Table 4: Structural operational semantic rules for IML

Following [21], with every PIML process term is associated a labeled transition system defined according
to Table 4. The action transition relation −−→ on the left represents the functional behavior. The delay
transition relation −; on the right represents the timing behavior according to the race policy; as in
MTIPP, all the possible ways of deriving a delay transition have to be taken into account. The presence of
two distinct transition relations emphasizes that, in IML, action execution is orthogonal to time passing.

Strong (resp. weak) bisimilarity for IML was defined in [21] by combining Milner’s strong (resp. weak)
bisimilarity for purely nondeterministic processes [28] and strong bisimilarity for MTIPP [22]. Therefore,
we introduce the exit rate of a process F ∈ PIML with respect to destination process class C ⊆ PMTIPP by
considering only delay transitions as follows:

rate(F, C) =
∑
{|λ ∈ R>0 | ∃F ′ ∈ C. F

λ
−; F ′ |}

To enforce action eagerness, the exit rate equality check is carried out only for processes in which no action
transition can be performed.

Definition 2.10. An equivalence relation B over PIML is a strong Markovian bisimulation iff, whenever
(F1, F2) ∈ B, then for all actions α ∈ Act and equivalence classes C ∈ PMTIPP/B it holds that:

• For each F1

α
−−→ F ′1 there exists F2

α
−−→ F ′2 such that (F ′1, F

′
2) ∈ B.

• If F1 and F2 have no action transitions, then:
rate(F1, C) = rate(F2, C)

We write F1 ∼IML F2 to denote that (F1, F2) is contained in a strong Markovian bisimulation.
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3. Direct Encoding from CIPA to TCCS

The first encoding that we examine for timed process calculi is the one defined in [12] in a deterministically
timed setting under action eagerness. This encoding translates CIPA processes into TCCS processes by
proceeding by induction on the syntactical structure of CIPA processes.

Definition 3.1. The direct encoding J K : PCIPA → PTCCS under action eagerness is defined as follows:
JnilK = recX : (1) . X

Ja .QK = a . (∆(a)) . JQK
Jwait t .QK = τ . (t) . JQK
JQ1 +Q2K = JQ1K + JQ2K
JQ1 | Q2K = JQ1K | JQ2K

JQ \LK = JQK \L
JQ [ϕ]K = JQK [ϕ]

JXK = X
JrecX : QK = recX : JQK

We now comment on the first three clauses, as the others are obvious. Process nil cannot be mapped to 0,
because the former can let any amount of time pass, while the latter cannot; time passing is encoded through
one unit at a time in this discrete-time setting (otherwise process 0 should be replaced as in Sect. 4.1).
A durational action a is translated into an identically named instantaneous action followed by a delay equal
to the duration of the original action; the delay cannot precede the instantaneous action because what is
observed in CIPA operational semantics is the starting time of actions, not their completion time as, e.g.,
in [17]. Likewise, a waiting is translated into an instantaneous τ -action followed by a delay equal to the
duration of the waiting itself, although the presence of the τ -action is not necessary in principle.

Theorem 3.2. Let Q1, Q2 ∈ PCIPA be restriction free. Then:
Q1 ∼CIPA Q2 ⇐⇒ JQ1K ∼TCCS JQ2K

Proof See [12].

The full abstraction result with respect to strong timed bisimilarity does not hold for processes including
occurrences of the restriction operator, thereby pinpointing the source of the different expressive power of
CIPA and TCCS under action eagerness. For example, given the two processes Q1 = (a .nil) \{a} | (b . c .nil)
and Q2 = (a .nil) \{a} | (b .nil), we have that Q1 6∼CIPA Q2 because Q1 can perform a durational b-action
followed by a durational c-action while Q2 can only perform a durational b-action. On the other hand,
JQ1K ∼TCCS JQ2K because both of them can only perform an instantaneous b-action after which the passage
of ∆(b) time units is blocked by the deadlocked common subprocess J(a .nil) \{a}K. The same problem
would arise if the restriction on a were applied to the entire processes instead of their common subprocess
enabling an a-action.

4. Reverse Encoding from TCCS to CIPA

A number of issues were raised in [12] about the existence of a reverse encoding from TCCS to CIPA.
In this section, we recall those issues, discuss how to address them, define a reverse encoding under action
eagerness, and show that it can only preserve weak timed bisimilarity due to the different way in which time
additivity is supported in TCCS and CIPA.

4.1. Adapting Syntax and Semantics of TCCS and CIPA

In order for a translation of TCCS processes into CIPA processes to be possible, it is necessary to slightly
revise syntax and semantics of both languages.

The first issue that we discuss is timelock. In a TCCS process, time does not resolve choices; indeed, the
operational rules for alternative and parallel composition allow time to pass only if all the subprocesses do so.
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As a consequence, a local timelock always implies a global timelock, which may in turn determine a deadlock.
By contrast, in CIPA timelock cannot occur unless there is a deadlock, because time passing is associated
with action execution and explicit waiting. Consider the TCCS process 0 + (t) .0 and the ideally corre-
sponding CIPA process nil+wait t .nil; the former process cannot let time pass, while the latter process can.
The same would happen with (a .0) \ {a}+ (t) .0 and (a .nil) \ {a}+ wait t .nil.

To avoid timelocks due to the stopped process 0, we replace it with the inactive process 0 introduced

in [30], which lets time pass according to the additional operational semantic rule 0
t
−; 0 where t ∈ N>0. We

denote by P ′TCCS the resulting set of process terms and by P′TCCS the subset of closed and guarded process
terms. To avoid timelocks caused by restriction, we have to limit our attention to restriction-free processes
as in Thm. 3.2. This is different from resorting, for both calculi, to a two-level syntax featuring restriction
only at the top level, as we did in [6], which unfortunately does not eliminate timelocks completely.

The second issue is related to the range of values that can be used in CIPA to express action durations.
In TCCS, it is possible to describe both timed processes and untimed ones. Consider for example the untimed
TCCS process a . b .0. This cannot be translated into a reasonably corresponding CIPA process for the very
simple reason that actions a and b are instantaneous, but CIPA does not allow zero durations. Moreover, due
to instantaneous actions, TCCS processes may exhibit Zeno behaviors, which are not possible in CIPA. For
instance, the timed TCCS process (t1) . a . recX : (b .X+c . (t2) .0) may perform, after time t1 and action a,
an arbitrary, even infinite, number of b-actions at the same time. These problems can be straightforwardly
solved by admitting in CIPA zero durations through an extended duration function ∆′ : (Act \ {τ}) → N,
as well as zero waitings for dealing with instantaneous τ -actions. We denote by P ′CIPA the resulting set
of process terms and by KP ′ the related set of augmented process terms, with P′CIPA and KP′ being the
corresponding subsets of closed and guarded process terms.

4.2. From TCCS Delays to CIPA Durations

One of the major design decisions about the translation of modified TCCS into modified CIPA is how
to assign durations to actions – directly via ∆′ for visible actions, indirectly through waitings for τ -actions.
In principle, it is desirable to be able to associate a suitable nonzero duration with every action occurring in
a TCCS process that is not untimed. Unfortunately, in most cases this is not possible or may compromise
full abstraction, as we now show.

Consider the TCCS process a . (t1) . b . (t2) .0. In this case, it is natural to interpret delay t1 as the
duration of a and delay t2 as the duration of b, thus regarding the occurrence of an instantaneous action of
TCCS as the beginning of the corresponding durational action of CIPA (initial view). In the TCCS process
(t1) . a . (t2) . b .0, the durations are as before, provided that the occurrence of an instantaneous action is
regarded as the end of the corresponding durational action (final view). Notice that, if a = b but t1 6= t2,
the translation into a reasonably corresponding CIPA process would not be possible, unless, as noted in [12],
we further extend the duration function for CIPA by admitting that different occurrences of the same action
may have different durations.

Let us now examine the case in which there is not a precise pairing between actions and delays, like,
e.g., in the TCCS process (t1) . a . (t2) .0. In this scenario, the duration of a can be either t1 or t2, but
in any case a waiting is necessary to account for the delay that is not associated with a. The situation is
even more complicated if we consider the TCCS process a . (t1) . (t2) . b .0. One option is to interpret t1 + t2
as the duration of a (initial view), with b having duration 0. The dual option is to interpret t1 + t2 as
the duration of b (final view), with a having duration 0. In any case, the definition of the encoding would
become technically involved, especially in the presence of recursion, due to the necessity of performing some
lookahead. Moreover, there seems not to be any strong reason for choosing one option rather than the other.

Yet another option is to interpret t1 as the duration of a (initial view) and t2 as the duration of b (final
view). This mixed option should be discarded because it would disrupt full abstraction of the encoding.
Indeed, the considered TCCS process is equivalent to the TCCS process a . (t2) . (t1) . b .0 while, under the
assumption t1 6= t2, the two corresponding CIPA processes are not equivalent to each other, because the
a-action of duration t1 in the first CIPA process cannot be matched by the a-action of duration t2 of the
second CIPA process.
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Summing up, on the one hand there are TCCS delays that cannot be associated with any visible action,
and hence have to be translated into CIPA waitings. On the other hand, it is not always possible to assign
a nonzero duration to every TCCS action. In particular, this is impossible in the case of untimed TCCS
processes. In this respect, it is also worth reminding that the two untimed TCCS processes a .0 | b .0
and a . b .0 + b . a .0 are always equivalent under the interleaving view of concurrency, while the two ideally
corresponding CIPA processes a .nil | b .nil and a . b .nil+b . a .nil are equivalent to each other only if actions
a and b have duration zero, because in that case all visible transitions of both processes start at time 0.

As a consequence, for the sake of simplicity, uniformity, and full abstraction, when translating modified
TCCS processes into modified CIPA processes we proceed as follows:

• Every TCCS instantaneous action a will be translated into a CIPA durational action a with ∆′(a) = 0.

• The TCCS instantaneous action τ will be translated into a CIPA waiting of duration 0.

• Every TCCS delay t will be translated into a CIPA waiting of duration t, where t ∈ N>0.

4.3. Reverse Encoding and Weak Timed Bisimilarity

The encoding of modified TCCS processes into modified CIPA processes under action eagerness proceeds
by induction on the syntactical structure of the former processes.

Definition 4.1. The reverse encoding J Kr : P ′TCCS → P ′CIPA under action eagerness is defined as follows:
J0Kr = nil

Ja . P Kr = a . JP Kr

Jτ . P Kr = wait 0 . JP Kr

J(t) . P Kr = wait t . JP Kr

JP1 + P2Kr = JP1Kr + JP2Kr

JP1 | P2Kr = JP1Kr | JP2Kr

JP \LKr = JP Kr \L
JP [ϕ]Kr = JP Kr [ϕ]

JXKr = X
JrecX : P Kr = recX : JP Kr

with ∆′(a) = 0 for all a ∈ Act \ {τ}. We denote by KJP Kr ∈ KP ′ the reverse encoding of P ∈ P ′TCCS

obtained by distributing clock “0⇒” over all subprocesses of JP Kr ∈ P ′CIPA.

Process 0 can be translated into process nil because neither can prevent time from advancing. The
subsequent three clauses stem from the three considerations at the end of Sect. 4.2. The remaining clauses
are obvious.

Unlike the direct encoding of Def. 3.1, the reverse encoding of Def. 4.1 does not preserve strong timed
bisimilarity. Consider the two modified TCCS processes:

P̄1 = (1) . (1) . a .0
P̄2 = (2) . a .0

which satisfy P̄1 ∼TCCS P̄2. Their corresponding augmented modified CIPA processes are the following:
KJP̄1Kr = 0⇒ (wait 1 .wait 1 . a . nil)
KJP̄2Kr = 0⇒ (wait 2 . a . nil)

but KJP̄1Kr 6∼CIPA KJP̄2Kr. The translation of delay prefixes in Def. 4.1 could be modified in such a way that
every delay becomes a sequence of unitary waitings, so that also P̄2 would be encoded into the first CIPA
process. However, this would loosen the correspondence between the transitions of the original processes
and those of their encoded versions, and would be appropriate only in a discrete-time setting like ours.

This example emphasizes an important difference between TCCS and CIPA, which does not affect the
direct encoding of Def. 3.1, because such an encoding cannot produce TCCS processes including consecutive
delay prefixes (like P̄1 above) due to the presence of a τ -action in its third clause and hence the strict alter-
nation of action prefixes and delay prefixes (apart from the encoding of nil). The reason why P̄1 ∼TCCS P̄2

holds is that in TCCS action execution is separated from time passing and the latter is subject to time
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Figure 1: Labeled transition system for the modified TCCS process P0

additivity, which is formalized through the operational semantic rules of TCCS. Thus, both P̄1 and P̄2 have
a sequence of two delay transitions each labeled with 1 as well as a single delay transition labeled with 2,
hence the strong bisimulation semantics for TCCS identifies those processes. On the other hand, KJP̄1Kr

can only perform a sequence of two τ -transitions each having duration 1, while KJP̄2Kr can only perform
a single τ -transition having duration 2, from which KJP̄1Kr 6∼CIPA KJP̄2Kr follows. It is however worth
noting that KJP̄1Kr ≈CIPA KJP̄2Kr, because the weak bisimulation semantics for CIPA implements a form of
time additivity for waitings. Therefore, we have to focus our attention on weak timed bisimilarities when
investigating full abstraction for the reverse encoding.

4.4. Full Abstraction Result

The states of the labeled transition systems underlying a process P ∈ P′TCCS and the corresponding pro-
cess KJP Kr ∈ KP′ are strictly related. Consider as an example the process P0 = a . (1) . b .0 | c . (2) . (1) . d .0.
Its labeled transition system is depicted in Fig. 1, while the one for KJP0Kr is shown in Fig. 2. It is easy to
see that, as far as only visible actions and zero-valued local clocks are concerned, we have a one-to-one
correspondence KJPiKr = Ki for i = 0, 1, 2, 3. However, the leading waitings in K1 and K2 produce
τ -transitions that can be executed independently by one of the sequential subprocesses, thereby moving
its own clock forward in time. In the meanwhile, the other subprocess still has actions to execute before

that time. For instance, we have that K1

τ@0
−−→

1
K ′1, but K ′1 can still perform the visible action c at time 0,

and this must be performed before the visible action b at time 1 as ill-timed paths are not admitted.
On the other hand, the CIPA counterpart K4 of the TCCS process P4 cannot perform any τ -action,

but KJP4Kr has clock values not corresponding to those of K4. Nevertheless, the b-action is performed at
the same time, i.e., with timestamp 1, in both cases. Similarly, states P5, P6, and P7, which are connected
only by delay transitions, respectively result in KJP5Kr, KJP6Kr, and KJP7Kr, with the first one having
local clock values different from those of K5 and the other two having local clock values different from
those of K6,7. Focussing on P5, we may observe that KJP5Kr = (0 ⇒ nil) | (0 ⇒ wait 1 .wait 1 . d . nil)
is ≈CIPA-equivalent to (0 ⇒ nil) | (1 ⇒ wait 1 . d . nil), which can be obtained from K5 by decreasing by 1
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Figure 2: Labeled transition system for the augmented modified CIPA process KJP0Kr

all of its local clock values. Note that pairs of corresponding local clocks are different in absolute value, but
agree on the relative differences: 1 − 0 = 2 − 1 = 1. In general, this time shift operation can neglect the
value of local clocks associated with nil subprocesses, because nil lets any amount of time pass.

To manage the clock discrepancies mentioned above, first of all we introduce a structural congruence ≡
over KP′ that permits to identify processes based on the following equalities for sequential subprocesses:

k ⇒ nil ≡ k′ ⇒ nil
k ⇒ (wait t .Q) ≡ (k + t)⇒ Q
k ⇒ (recX : Q) ≡ k ⇒ (Q{recX : Q ↪→ X})

where k, k′ ∈ N and t ∈ N>0. Structural congruence is strictly related to weak bisimilarity.

Proposition 4.2. Let K1,K2 ∈ KP′. If K1 ≡ K2, then K1 ≈CIPA K2.

Proof It follows from the fact that the two processes in each of the equalities for ≡ are ≈CIPA-equivalent
to each other and from the congruence property of ≈CIPA, which can be proved as in [1].

Following [12], we then introduce a predicate wf ⊆ KP′×N and an update function up : KP′×N→ KP′.
We let wf (K, k) hold iff the local clocks of K not associated with nil subprocesses can be decreased by k
without any of them becoming negative:
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wf (k′ ⇒ nil, k)

k ≤ k′

wf (k′ ⇒ (a .Q), k)

k ≤ k′

wf (k′ ⇒ (wait t .Q), k)

k ≤ k′

wf (k′ ⇒ (recX : Q), k)

wf (K1, k) wf (K2, k)

wf (K1 +K2, k)

wf (K1, k) wf (K2, k)

wf (K1 | K2, k)

wf (K, k)

wf (K \L, k)

wf (K, k)

wf (K [ϕ], k)

If wf (K, k), then up(K, k) is the process obtained from K by decreasing by k all of its local clocks:
up(k′ ⇒ nil, k) = (k′ − k)⇒ nil k ≤ k′
up(k′ ⇒ nil, k) = 0⇒ nil k > k′

up(k′ ⇒ (a .Q), k) = (k′ − k)⇒ (a .Q) k ≤ k′
up(k′ ⇒ (wait t .Q), k) = (k′ − k)⇒ (wait t .Q) k ≤ k′
up(k′ ⇒ (recX : Q), k) = (k′ − k)⇒ (recX : Q) k ≤ k′

up(K1 +K2, k) = up(K1, k) + up(K2, k)
up(K1 | K2, k) = up(K1, k) | up(K2, k)

up(K \L, k) = up(K, k) \L
up(K [ϕ], k) = up(K, k) [ϕ]

Using ≡ and up, the non-initial states in Figs. 1 and 2 turn out to be related as follows, where increasing
time shifts k in up(·, k) correspond to subsequent delay transitions.

• KJP1Kr = K1 ≡ K ′1 KJP2Kr = K2 ≡ K ′2 KJP3Kr = K3 ≡ K ′3 ≡ K ′′3 ≡ K4

• KJP4Kr = (0⇒ b .nil) | (0⇒ wait 1 .wait 1 . d . nil) ≡ (0⇒ b .nil) | (1⇒ wait 1 . d . nil) = up(K4, 1)

• KJP5Kr = (0⇒ nil) | (0⇒ wait 1 .wait 1 . d . nil) ≡ (0⇒ nil) | (1⇒ wait 1 . d . nil) = up(K5, 1)

• KJP6Kr = (0⇒ nil) | (0⇒ wait 1 . d . nil) ≡ (0⇒ nil) | (1⇒ d .nil) = up(K6,7, 2)

• KJP7Kr = (0⇒ nil) | (0⇒ d .nil) = up(K6,7, 3)

• KJP8Kr = (0⇒ nil) | (0⇒ nil) = up(K8, 3)

We can now present the full abstraction result with respect to weak timed bisimilarity for the reverse
encoding of Def. 4.1 under action eagerness. Due to the same reason exemplified after Thm. 3.2, the validity
of the result is limited to processes in which there are no occurrences of the restriction operator. Moreover,
it is worth reminding that in TCCS time does not resolve choices, while in CIPA time passing is associated
with action execution and explicit waitings, hence the operational semantic rules for alternative and parallel
composition are quite different in the two calculi. In particular, if we consider a TCCS process whose
topmost operator is an alternative composition in which at least one subprocess operand starts with a delay
prefix, then no correspondence can be established between the transitions of the process and those of its
encoded version, which means that full abstraction does not hold in this case.

For example, processes P̆1 = a .0 + (1) .0 and P̆2 = a .0 satisfy P̆1 ≈TCCS P̆2, while their encodings
KJP̆1Kr = (0 ⇒ a .nil) + (0 ⇒ wait 1 .nil) and KJP̆2Kr = 0 ⇒ a .nil are such that KJP̆1Kr 6≈CIPA KJP̆2Kr,
because the τ -transition at time 0 of duration 1 corresponding to the waiting in KJP̆1Kr leads to a state that
is not ≈CIPA-equivalent to KJP̆2Kr. As another example, in which both processes start with precisely the
same delay, P̆3 = (1) . a .0 + (1) . b .0 and P̆4 = (1) . (a .0 + b .0) satisfy P̆3 ≈TCCS P̆4, while their encodings
KJP̆3Kr = (0 ⇒ wait 1 . a . nil) + (0 ⇒ wait 1 . b . nil) and KJP̆4Kr = 0 ⇒ wait 1 . (a .nil + b .nil) are such
that KJP̆3Kr 6≈CIPA KJP̆4Kr, because each of the two τ -transitions at time 0 of duration 1 corresponding to
the two waitings in KJP̆3Kr leads to a state that is ≈CIPA-equivalent to neither KJP̆4Kr nor its τ -derivative
1⇒ (a .nil + b .nil).

The problem would not arise if we had parallel composition in place of alternative composition, because
in that case no subprocess operand would be left out and CIPA well timedness would prevent some actions
from being executed too soon. For instance, consider processes P̆5 = (1) . a .0 | b .0 and P̆6 = b . (1) . a .0,
which satisfy P̆5 ≈TCCS P̆6. Their encodings KJP̆5Kr = (0⇒ wait 1 . a . nil) | (0⇒ b .nil) and KJP̆6Kr = 0⇒
b .wait 1 . a . nil are ≈CIPA-equivalent because, after the τ -transition at time 0 of duration 1 corresponding
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to its only waiting, the former process cannot perform a at time 1 as this would be followed by b at time 0
thereby resulting in an ill-timed path.

In conclusion, the reverse encoding from modified TCCS to modified CIPA can be fully abstract, under
action eagerness and with respect to weak timed bisimilarity, only for restriction-free processes that are
delay-choice free. A TCCS process is delay-choice free iff, for each occurrence of the alternative composition
operator in the process, neither subprocess operand can perform a delay transition.

Following [12], we prove some preliminary results aimed at formally establishing a correspondence be-
tween the transitions of a modified TCCS process and the transitions of (augmented modified CIPA processes
structurally congruent to) the encoded version of that process. The first preliminary result elicits a property
of the reverse encoding that has to do with recursion, which will be exploited in the proof of the subsequent
preliminary results.

Lemma 4.3. Let P, P̂ ∈ P ′TCCS and X,Y ∈ Var . Then:

KJP{recX : P̂ ↪→ Y }Kr = 0⇒ JP Kr{recX : JP̂ Kr ↪→ Y }

Proof We proceed by induction on the syntactical structure of P ∈ P ′TCCS:

• If P = 0 or P ∈ Var \ {Y }, then:
KJP{recX : P̂ ↪→ Y }Kr = 0⇒ nil = 0⇒ JP Kr{recX : JP̂ Kr ↪→ Y }

• If P = Y , then:
KJP{recX : P̂ ↪→ Y }Kr = KJrecX : P̂ Kr = 0⇒ recX : JP̂ Kr = 0⇒ JP Kr{recX : JP̂ Kr ↪→ Y }

• Let P = α . P ′ and assume that KJP ′{recX : P̂ ↪→ Y }Kr = 0⇒ JP ′Kr{recX : JP̂ Kr ↪→ Y }. Then:

KJP{recX : P̂ ↪→ Y }Kr = KJα . (P ′{recX : P̂ ↪→ Y })Kr

= 0⇒ α . JP ′{recX : P̂ ↪→ Y }Kr

= 0⇒ α . (JP ′Kr{recX : JP̂ Kr ↪→ Y })
= 0⇒ (α . JP ′Kr){recX : JP̂ Kr ↪→ Y }
= 0⇒ JP Kr{recX : JP̂ Kr ↪→ Y }

• Let P = P1 + P2 and for i ∈ {1, 2} assume that KJPi{recX : P̂ ↪→ Y }Kr = 0 ⇒ JPiKr{recX : JP̂ Kr

↪→ Y }. Then:

KJP{recX : P̂ ↪→ Y }Kr = KJP1{recX : P̂ ↪→ Y }+ P2{recX : P̂ ↪→ Y }Kr

= 0⇒ JP1{recX : P̂ ↪→ Y }Kr + 0⇒ JP2{recX : P̂ ↪→ Y }Kr

= 0⇒ JP1Kr{recX : JP̂ Kr ↪→ Y }+ 0⇒ JP2Kr{recX : JP̂ Kr ↪→ Y }
= 0⇒ (JP1Kr + JP2Kr){recX : JP̂ Kr ↪→ Y }
= 0⇒ JP Kr{recX : JP̂ Kr ↪→ Y }

• The case P = P1 | P2 is similar to the previous one.

• Let P = P ′ \L and assume that KJP ′{recX : P̂ ↪→ Y }Kr = 0⇒ JP ′Kr{recX : JP̂ Kr ↪→ Y }. Then:

KJP{recX : P̂ ↪→ Y }Kr = KJP ′{recX : P̂ ↪→ Y } \LKr

= 0⇒ JP ′{recX : P̂ ↪→ Y }Kr \L
= 0⇒ JP ′Kr{recX : JP̂ Kr ↪→ Y } \L
= 0⇒ (JP ′Kr \L){recX : JP̂ Kr ↪→ Y }
= 0⇒ JP Kr{recX : JP̂ Kr ↪→ Y }

• The case P = P ′ [ϕ] is similar to the previous one.

• Let P = recX ′ : P ′ and assume that KJP ′{recX : P̂ ↪→ Y }Kr = 0⇒ JP ′Kr{recX : JP̂ Kr ↪→ Y }:

– If X ′ = Y , then:
KJP{recX : P̂ ↪→ Y }Kr = KJP Kr = 0⇒ JP Kr{recX : JP̂ Kr ↪→ Y }
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– If X ′ 6= Y , then:
KJP{recX : P̂ ↪→ Y }Kr = KJrecX ′ : (P ′{recX : P̂ ↪→ Y })Kr

= 0⇒ recX ′ : JP ′{recX : P̂ ↪→ Y }Kr

= 0⇒ recX ′ : (JP ′Kr{recX : JP̂ Kr ↪→ Y })
= 0⇒ (recX ′ : JP ′Kr){recX : JP̂ Kr ↪→ Y }
= 0⇒ JP Kr{recX : JP̂ Kr ↪→ Y }

The second preliminary result formalizes the correspondence between the action transitions of a modified
TCCS process and the transitions, labeled with the same actions and duration zero, of the CIPA encoding
of that process (see, e.g., states P0, P1, P2 in Fig. 1 and states K0, K1, K2 in Fig. 2).

Lemma 4.4. Let α ∈ Act and let P, P ′ ∈ P′TCCS be restriction and delay-choice free. Then P
α
−−→ P ′ iff

KJP Kr
α@0
−−→

0
KJP ′Kr.

Proof Given α ∈ Act and P, P ′ ∈ P′TCCS restriction and delay-choice free, the proof is divided into two parts:

=⇒) Assuming that P
α
−−→ P ′, we prove that KJP Kr

α@0
−−→

0
KJP ′Kr by proceeding by induction on the length

of the derivation of the action transition P
α
−−→ P ′, intended as the number n ∈ N≥1 of operational

semantic rules on the left-hand side of Table 1 that have been applied in order to derive the considered
transition:

– If n = 1, then P = α . P ′. Therefore KJP Kr = 0⇒ (α . JP ′Kr)
α@0
−−→

0
0⇒ JP ′Kr = KJP ′Kr.

– Let n > 1 and suppose that the result holds for every transition derivable from a process in P′TCCS,
which is restriction and delay-choice free, by applying less than n operational semantic rules on
the left-hand side of Table 1. There are several cases based on the syntactical structure of P
(which is restriction and delay-choice free):

∗ If P = P1 + P2, then the transition derives from the fact that Pi
α
−−→ P ′ for some

i ∈ {1, 2}. From the induction hypothesis, it follows that KJPiKr
α@0
−−→

0
KJP ′Kr, thus KJP Kr =

KJP1Kr +KJP2Kr
α@0
−−→

0
KJP ′Kr.

∗ If P = P1 | P2, there are two subcases:

· If the transition is not originated from a synchronization, then it derives from the fact

that Pi
α
−−→ P ′i for some i ∈ {1, 2}. Without loss of generality, we assume i = 1, so that

P ′ = P ′1 | P2. From the induction hypothesis, it follows that KJP1Kr
α@0
−−→

0
JP ′1Kr, thus

KJP Kr = KJP1Kr | KJP2Kr
α@0
−−→

0
KJP ′1Kr | KJP2Kr = KJP ′Kr.

· If the transition is originated from a synchronization, then it derives from the fact that

P1

a
−−→ P ′1 and P2

ā
−−→ P ′2 for some a ∈ Act \ {τ}, with α = τ and P ′ = P ′1 | P ′2. From

the induction hypothesis, it follows that KJP1Kr
a@0
−−→

0
JP ′1Kr and KJP2Kr

ā@0
−−→

0
JP ′2Kr, thus

KJP Kr = KJP1Kr | KJP2Kr
τ@0
−−→

0
KJP ′1Kr | KJP ′2Kr = KJP ′Kr.

∗ If P = P̄ [ϕ], then the transition derives from the fact that P̄
β
−−→ P̄ ′ for some β ∈ Act

such that ϕ(β) = α, with P ′ = P̄ ′ [ϕ]. From the induction hypothesis, it follows that

KJP̄ Kr
β@0
−−→

0
KJP̄ ′Kr, thus KJP Kr = JP̄ Kr [ϕ]

α@0
−−→

0
JP̄ ′Kr [ϕ] = KJP ′Kr.
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∗ If P = recX : P̄ , then the transition derives from the fact that P̄{recX : P̄ ↪→ X}
α
−−→ P ′.

From the induction hypothesis, it follows that KJP̄{recX : P̄ ↪→ X}Kr
α@0
−−→

0
KJP ′Kr, thus

KJP Kr = 0 ⇒ (recX : JP̄ Kr)
α@0
−−→

0
KJP ′Kr because the unfolding of 0 ⇒ (recX : JP̄ Kr), i.e.,

0⇒ (JP̄ Kr{recX : JP̄ Kr ↪→ X}), is equal to KJP̄{recX : P̄ ↪→ X}Kr by virtue of Lemma 4.3.

⇐=) Assuming that KJP Kr
α@0
−−→

0
KJP ′Kr, the proof that P

α
−−→ P ′ is similar to the previous one, in the

sense that it proceeds by induction on the number of operational semantic rules of Table 2 that

have been applied in order to derive the transition KJP Kr
α@0
−−→

0
KJP ′Kr and by performing a case

analysis based on the syntactical structure of KJP Kr.

The third preliminary result generalizes the second one by formalizing the correspondence between the
action transitions of a modified TCCS process and the transitions, labeled with the same actions and duration
zero, of all augmented modified CIPA processes that, after a suitable time shift, are structurally congruent
to the CIPA encoding of the original process (see, e.g., state P4 in Fig. 1 and state K4 in Fig. 2, which
satisfy up(K4, 1) ≡ KJP4Kr).

Lemma 4.5. Let α ∈ Act and let P ∈ P′TCCS be restriction and delay-choice free:

1. If P
α
−−→ P ′ for some P ′ ∈ P′TCCS restriction and delay-choice free, then for all k ∈ N and K ∈ KP′ such

that wf (K, k) and up(K, k) ≡ KJP Kr it holds that K
α@k
−−→

0
K ′ for some K ′ ∈ KP′ such that wf (K ′, k)

and up(K ′, k) ≡ KJP ′Kr.

2. For all k ∈ N and K ∈ KP′ such that wf (K, k) and up(K, k) ≡ KJP Kr, if K
α@k
−−→

0
K ′ for some K ′ ∈ KP′

such that wf (K ′, k), then P
α
−−→ P ′ for some P ′ ∈ P′TCCS restriction and delay-choice free such that

up(K ′, k) ≡ KJP ′Kr.

Proof Given α ∈ Act and P ∈ P′TCCS restriction and delay-choice free, the proof is divided into two parts:

1. Assuming that P
α
−−→ P ′ for some P ′ ∈ P′TCCS restriction and delay-choice free, we prove the result

by proceeding by induction on the length of the derivation of the action transition P
α
−−→ P ′, intended

as the number n ∈ N≥1 of operational semantic rules on the left-hand side of Table 1 that have been
applied in order to derive the considered transition:

• If n = 1, then P = α . P ′. Given k ∈ N, the only process K ∈ KP′ that satisfies the conditions
wf (K, k) and up(K, k) ≡ KJP Kr is K = k ⇒ (α . JP ′Kr) in the case that α 6= τ , or K = k ⇒

(wait 0 . JP ′Kr) in the case that α = τ . In either case, K
α@k
−−→

0
k ⇒ JP ′Kr. If we let K ′ = k ⇒ JP ′Kr,

then wf (K ′, k) and up(K ′, k) ≡ KJP ′Kr.

• Let n > 1 and suppose that the result holds for every transition derivable from a process in P′TCCS,
which is restriction and delay-choice free, by applying less than n operational semantic rules on
the left-hand side of Table 1. There are several cases based on the syntactical structure of P
(which is restriction and delay-choice free):

– If P = P1 + P2, then the transition derives from the fact that Pi
α
−−→ P ′ for some i ∈ {1, 2}.

Given k ∈ N, any process K ∈ KP′ that satisfies the conditions wf (K, k) and up(K, k) ≡
KJP Kr = KJP1Kr + KJP2Kr is of the form K = K1 + K2 where Kj ∈ KP′,wf (Kj , k), and
up(Kj , k) ≡ KJPjKr for all j ∈ {1, 2}. From the induction hypothesis, it follows that

Ki

α@k
−−→

0
K ′, hence K

α@k
−−→

0
K ′, for some K ′ ∈ KP′ such that wf (K ′, k) and up(K ′, k) ≡ KJP ′Kr.

20



Note that the negative premise in the CIPA rule for the + operator applied to K is satisfied
because there cannot be local clocks in K that are less than k. This follows from the fact that
either up(K, k) is exactly equal to KJP Kr, or it is the result of the application of structural
congruence. In the former case, all local clocks in K are exactly equal to k. In the latter case,
some waitings have been moved from a subprocess to the corresponding local clock, which
then is greater than or equal to k. Thus, no other subprocess in K can perform an action at
a time less than k.

– If P = P1 | P2, there are two subcases for the derivation of the transition. Before examining
them, we observe that, given k ∈ N, any process K ∈ KP′ that satisfies the conditions
wf (K, k) and up(K, k) ≡ KJP Kr = KJP1Kr | KJP2Kr is of the form K = K1 | K2 where
Kj ∈ KP′, wf (Kj , k), and up(Kj , k) ≡ KJPjKr for all j ∈ {1, 2}. Here are the two subcases:

∗ If the transition is not originated from a synchronization, then it derives from the fact

that Pi
α
−−→ P ′i for some i ∈ {1, 2}. Without loss of generality, we assume i = 1, so

that P ′ = P ′1 | P2. From the induction hypothesis, it follows that K1

α@k
−−→

0
K ′1 for some

K ′1 ∈ KP′ such that wf (K ′1, k) and up(K ′1, k) ≡ KJP ′1Kr, thus K
α@k
−−→

0
K ′1 | K2 with

wf (K ′1 | K2, k) and up(K ′1 | K2, k) = up(K ′1, k) | up(K2, k) ≡ KJP ′1Kr | KJP2Kr = KJP ′Kr.
As far as the negative premise in the CIPA rule for the | operator applied to K is
concerned, the same observation made above for the + operator holds true.

∗ If the transition is originated from a synchronization, then it derives from the fact that

P1

a
−−→ P ′1 and P2

ā
−−→ P ′2 for some a ∈ Act \{τ}, with α = τ and P ′ = P ′1 | P ′2. From the

induction hypothesis, it follows that K1

a@k
−−→

0
K ′1 for some K ′1 ∈ KP′ such that wf (K ′1, k)

and up(K ′1, k) ≡ KJP ′1Kr as well as K2

ā@k
−−→

0
K ′2 for some K ′2 ∈ KP′ such that wf (K ′2, k)

and up(K ′2, k) ≡ KJP ′2Kr, thus K
τ@k
−−→

0
K ′1 | K ′2 with wf (K ′1 | K ′2, k) and up(K ′1 | K ′2, k) =

up(K ′1, k) | up(K ′2, k) ≡ KJP ′1Kr | KJP ′2Kr = KJP ′Kr.

– If P = P̄ [ϕ], then the transition derives from the fact that P̄
β
−−→ P̄ ′ for some β ∈ Act

such that ϕ(β) = α, with P ′ = P̄ ′ [ϕ]. Given k ∈ N, any process K ∈ KP′ that satisfies
the conditions wf (K, k) and up(K, k) ≡ KJP Kr = KJP̄ Kr [ϕ] is of the form K = K̄ [ϕ] where
K̄ ∈ KP′, wf (K̄, k), and up(K̄, k) ≡ KJP̄ Kr. From the induction hypothesis, it follows that

K̄
β@k
−−→

0
K̄ ′ for some K̄ ′ ∈ KP′ such that wf (K̄ ′, k) and up(K̄ ′, k) ≡ KJP̄ ′Kr, thus K

α@k
−−→

0
K̄ ′ [ϕ]

with wf (K̄ ′ [ϕ], k) and up(K̄ ′ [ϕ], k) = up(K̄ ′, k) [ϕ] ≡ KJP̄ ′Kr [ϕ] = KJP ′Kr.

– If P = recX : P̄ , then the transition derives from the fact that P̄{recX : P̄ ↪→ X}
α
−−→ P ′.

Given k ∈ N, the only processes in KP′ that satisfy the conditions involving k and P
are K = k ⇒ (recX : JP̄ Kr) and its unfolding K̄ = k ⇒ (JP̄ Kr{recX : JP̄ Kr ↪→ X}),
because K̄ ≡ K. Since by virtue of Lemma 4.3 it holds that KJP̄{recX : P̄ ↪→ X}Kr =
0⇒ (JP̄ Kr{recX : JP̄ Kr ↪→ X}) = up(K̄, k), we proceed as follows in the two subcases:

∗ In the subcase of K, from the induction hypothesis it follows that K̄
α@k
−−→

0
K ′, hence

K
α@k
−−→

0
K ′, for some K ′ ∈ KP′ such that wf (K ′, k) and K ′ ≡ KJP ′Kr.

∗ In the subcase of K̄, it is as if we started from P̄{recX : P̄ ↪→ X}, a process whose

syntactical structure has already been treated in this proof, hence K̄
α@k
−−→

0
K ′ for some

K ′ ∈ KP′ such that wf (K ′, k) and K ′ ≡ KJP ′Kr.
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2. Let k ∈ N and K ∈ KP′ be such that wf (K, k) and up(K, k) ≡ KJP Kr. Assuming that K
α@k
−−→

0
K ′ for

some K ′ ∈ KP′ such that wf (K ′, k), the proof that P
α
−−→ P ′, for some P ′ ∈ P′TCCS restriction and

delay-choice free such that up(K ′, k) ≡ KJP ′Kr, is similar to the previous one, in the sense that it
proceeds by induction on the number of operational semantic rules of Table 2 that have been applied

in order to derive the transition K
α@k
−−→

0
K ′ and by performing a case analysis based on the syntactical

structure of K.

The fourth preliminary result formalizes the correspondence between the delay transitions of a modified
TCCS process and the sequences of τ -transitions labeled with durations greater than zero of some aug-
mented modified CIPA processes, having no transitions of duration zero, that, after a suitable time shift,
are structurally congruent to the CIPA encoding of the original process (see, e.g., state P3 in Fig. 1 and
state K3 in Fig. 2 satisfying K3 = KJP3Kr, as well as state P5 in Fig. 1 and state K5 in Fig. 2 satisfying
up(K5, 1) ≡ KJP5Kr). Considering CIPA processes without transitions of duration zero is a consequence of
the fact that, under action urgency, TCCS processes with delay transitions cannot have action transitions.
In addition to that, as can be noted there are other three differences with respect to the correspondence
established for action transitions with the previous two lemmas.

Firstly, a tight correspondence like the one in Lemma 4.4 does not necessarily hold for delay transitions.
Unlike [12], where the TCCS processes generated by the direct encoding of Def. 3.1 feature (apart from the
translation of nil) a strict alternation between action prefixes and delay prefixes, the TCCS processes to which
the reverse encoding is applied may start with a delay prefix. When mimicking a TCCS delay transition in
CIPA, we have to pay attention to the different way in which time additivity is supported in TCCS and CIPA.
For instance, process P̄2 = (2) . a .0 of Sect. 4.3 has a delay transition labeled with 1 that cannot be matched
by KJP̄2Kr, but can be matched by any process Kk ∈ KP′ of the form k ⇒ (wait 1 .wait 1 . a . nil) for k ∈ N.
Notice that up(Kk, k), i.e., K0 = 0⇒ (wait 1 .wait 1 . a . nil), is syntactically different from, but structurally
congruent to, process KJP̄2Kr = 0 ⇒ (wait 2 . a . nil) because we have that 0 ⇒ (wait 1 .wait 1 . a . nil) ≡
1⇒ (wait 1 . a . nil) ≡ 2⇒ (a .nil) ≡ 0⇒ (wait 2 . a . nil).

Secondly, aiming at establishing for delay transitions a looser correspondence like the one in Lemma 4.5,
we can rely only on some – not all – augmented modified CIPA processes, having no transitions of duration
zero, that, after a suitable time shift, are structurally congruent to the CIPA encoding of the original process.
This is shown by the example above, where the delay transition of P̄2 labeled with 1 can be matched by Kk

for all k ∈ N, but not by KJP̄2Kr, which is structurally congruent to itself after a zero time shift.
Thirdly, on the CIPA side it is necessary to work with sequences of τ -transitions, instead of individual

τ -transitions. Consider for example the modified TCCS process P = (1) . a .0 | (1) . b .0, which has a
delay transition labeled with 1 to P ′ = a .0 | b .0. Its CIPA encoding KJP Kr = 0 ⇒ (wait 1 . a . nil) |
0 ⇒ (wait 1 . b . nil) has a τ -transition at time 0 of duration 1 to K ′l = 1 ⇒ (a .nil) | 0 ⇒ (wait 1 . b . nil)
and a τ -transition at time 0 of duration 1 to K ′r = 0 ⇒ (wait 1 . a . nil) | 1 ⇒ (b .nil). Both K ′l and K ′r
have a τ -transition at time 0 of duration 1 to K ′ = 1 ⇒ (a .nil) | 1 ⇒ (b .nil), but neither can execute
its only enabled visible action at time 1 as this would generate an ill-timed path. Notice that wf (K ′, 1)
and up(K ′, 1) = KJP ′Kr, while wf (K ′l , 1) and wf (K ′r, 1) do not hold because one of their local clocks is 0.
Thus, only K ′ can be considered for establishing a correspondence with P ′, and K ′ can be reached from
KJP Kr only after a sequence of two τ -transitions, each starting at time 0 and having duration 1.

In general, the τ -transitions in the sequence will not have the same duration. For instance, the modified
TCCS process P̃ = (2) . recX : ((1) . a .0 | (5) . b .X) has a delay transition of duration 3 that cannot be
matched by a sequence of two τ -transitions with the same duration starting from KJP̃ Kr. However, KJP̃ Kr

can respond with a τ -transition at time 0 of duration 2 followed by a τ -transition at time 2 of duration 1.
As another example, K3 in Fig. 2 has a τ -transition of duration 2 that cannot be matched by the only delay
transition of P3 in Fig. 1. However, the sequence formed by the τ -transition of duration 2 from K3 to K ′′3
and the τ -transition of duration 1 from K ′′3 to K4 can be matched by the delay transition labeled with 1
from P3 to P4; notice that wf (K ′′3 , 1) does not hold, while wf (K4, 1) and up(K4, 1) ≡ KJP4Kr.

Lemma 4.6. Let t ∈ N>0 and let P ∈ P′TCCS be restriction and delay-choice free:
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1. If P
t
−; P ′ for some P ′ ∈ P′TCCS restriction and delay-choice free, then for all k ∈ N there exists K ∈

KP′, having no transitions of duration zero at time k and satisfying wf (K, k) and up(K, k) ≡ KJP Kr,

such that K = K0

τ@k0

−−→
t0

K1

τ@k1

−−→
t1
· · ·

τ@km−1

−−→
tm−1

Km = K ′ for some:

• m ∈ N≥1,

• Ki ∈ KP′ for all 1 ≤ i ≤ m,

• ki ∈ N≥k for all 0 ≤ i ≤ m− 1, with k0 = k and ki ≤ kj for i ≤ j, and

• ti ∈ N>0 for all 0 ≤ i ≤ m− 1

where wf (K ′, k + t) and up(K ′, k + t) ≡ KJP ′Kr.

2. For all k ∈ N there exists K ∈ KP′, having no transitions of duration zero at time k and satisfying

wf (K, k) and up(K, k) ≡ KJP Kr, such that, if K = K0

τ@k0

−−→
t0

K1

τ@k1

−−→
t1
· · ·

τ@km−1

−−→
tm−1

Km = K ′ for some:

• m ∈ N≥1,

• Ki ∈ KP′ for all 1 ≤ i ≤ m,

• ki ∈ N≥k for all 0 ≤ i ≤ m− 1, with k0 = k and ki ≤ kj for i ≤ j, and

• ti ∈ N>0 for all 0 ≤ i ≤ m− 1

where wf (K ′, k + t), then P
t
−; P ′ for some P ′ ∈ P′TCCS restriction and delay-choice free such that

up(K ′, k + t) ≡ KJP ′Kr.

Proof Given t ∈ N>0 and P ∈ P′TCCS restriction and delay-choice free, the proof is divided into two parts:

1. Assuming that P
t
−; P ′ for some P ′ ∈ P′TCCS restriction and delay-choice free, we prove the result by

proceeding by induction on the length of the derivation of the delay transition P
t
−; P ′, intended as

the number n ∈ N≥1 of operational semantic rules on the right-hand side of Table 1 that have been
applied in order to derive the considered transition:

• If n = 1 and P = 0, then P ′ = 0. Given k ∈ N, we choose K = k ⇒ wait t .nil, which has
no transitions of duration zero at time k and satisfies wf (K, k) and up(K, k) = 0 ⇒ wait t.nil ≡
t ⇒ nil ≡ 0 ⇒ nil = KJP Kr by virtue of the structural congruence rule for nil. It holds that

K
τ@k
−−→
t

(k+ t)⇒ nil. If we let K ′ = (k+ t)⇒ nil, then wf (K ′, k+ t) and up(K ′, k+ t) ≡ KJP ′Kr.

• If n = 1 and P = (t′) . P̄ with t′ ∈ N≥t, there are two subcases:

– If t′ = t, then P ′ = P̄ . Given k ∈ N, we choose K = k ⇒ wait t . JP ′Kr, which has
no transitions of duration zero at time k and satisfies wf (K, k) and up(K, k) ≡ KJP Kr.

It holds that K
τ@k
−−→
t

(k + t)⇒ JP ′Kr. If we let K ′ = (k + t)⇒ JP ′Kr, then wf (K ′, k + t) and

up(K ′, k + t) ≡ KJP ′Kr.

– If t′ > t, then P ′ = (t′ − t) . P̄ . Given k ∈ N, we choose K = k ⇒ wait t .wait (t′ − t) . JP̄ Kr,
which has no transitions of duration zero at time k and satisfies wf (K, k) and up(K, k) =
0⇒ wait t .wait (t′ − t) . JP̄ Kr ≡ t⇒ wait (t′ − t) . JP̄ Kr ≡ (t+ (t′ − t))⇒ JP̄ Kr = t′ ⇒ JP̄ Kr ≡

0 ⇒ wait t′ . JP̄ Kr = KJP Kr. It holds that K
τ@k
−−→
t

(k + t) ⇒ wait (t′ − t) . JP ′Kr. If we let

K ′ = (k + t)⇒ wait (t′ − t) . JP ′Kr, then wf (K ′, k + t) and up(K ′, k + t) ≡ KJP ′Kr.

• Let n > 1 and suppose that the result holds for every transition derivable from a process in P′TCCS,
which is restriction and delay-choice free, by applying less than n operational semantic rules on
the right-hand side of Table 1. There are several cases based on the syntactical structure of P
(which is restriction and delay-choice free):
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– If P = (t′) . P̄ with t′ ∈ N]0,t[, then the transition derives from the fact that P̄
t−t′
−; P ′.

Given k̄ ∈ N, from the induction hypothesis it follows that there exists Kk̄ ∈ KP′, having no
transitions of duration zero at time k̄ and satisfying wf (Kk̄, k̄) and up(Kk̄, k̄) ≡ KJP̄ Kr, such

that Kk̄ = Kk̄,0

τ@kk̄,0

−−→
tk̄,0

Kk̄,1

τ@kk̄,1

−−→
tk̄,1

· · ·
τ@kk̄,m

k̄
−1

−−→
tk̄,m

k̄
−1

Kk̄,mk̄
= K ′

k̄
for some mk̄ ∈ N≥1, Kk̄,i ∈ KP′

for all 1 ≤ i ≤ mk̄, kk̄,i ∈ N≥k̄ for all 0 ≤ i ≤ mk̄−1 (with kk̄,0 = k̄ and kk̄,i ≤ kk̄,j for i ≤ j),
and tk̄,i ∈ N>0 for all 0 ≤ i ≤ mk̄ − 1, where wf (K ′

k̄
, k̄ + (t− t′)) and up(K ′

k̄
, k̄ + (t− t′)) ≡

KJP ′Kr. Given k ∈ N, we choose K = k ⇒ wait t′ .Kk′ with k′ = k + t′, which has no
transitions of duration zero at time k and satisfies wf (K, k) and up(K, k) ≡ KJP Kr. The result

then follows by observing that K
τ@k
−−→
t′

Kk′

τ@kk′,0
−−→
tk′,0

Kk′,1

τ@kk′,1
−−→
tk′,1

· · ·
τ@kk′,m

k′−1

−−→
tk′,m

k′−1

Kk′,mk′ = K ′k′

where wf (K ′k′ , k
′ + (t− t′)), i.e., wf (K ′k′ , k + t), and up(K ′k′ , k + t) ≡ KJP ′Kr.

– If P = P1 | P2, then the transition derives from the fact that Pj
t
−; P ′j for all j ∈ {1, 2},

with P ′ = P ′1 | P ′2. Given k ∈ N, from the induction hypothesis it follows that for all j ∈
{1, 2} there exists Kj ∈ KP′, having no transitions of duration zero at time k and satisfying

wf (Kj , k) and up(Kj , k) ≡ KJPjKr, such that Kj = Kj
0

τ@kj0
−−→
tj0

Kj
1

τ@kj1
−−→
tj1

· · ·
τ@kjmj−1

−−→
tjmj−1

Kj
mj

= K ′j

for some mj ∈ N≥1, Kj
i ∈ KP′ for all 1 ≤ i ≤ mj , k

j
i ∈ N≥k for all 0 ≤ i ≤ mj − 1 (with

kj0 = k and kji ≤ k
j
h for i ≤ h), and tji ∈ N>0 for all 0 ≤ i ≤ mj − 1, where wf (K ′j , k + t) and

up(K ′j , k + t) ≡ KJP ′jKr. We choose K = K1 | K2, which has no transitions of duration zero
at time k and satisfies wf (K, k) and up(K, k) ≡ KJP Kr. The result then follows by applying
m1 +m2 times the first two operational semantic rules for parallel composition of Table 2 so
to interleave the two sequences of transitions originating from K1 and K2 in a way that the
resulting path is not ill timed, i.e., the merged sequence of kji values is not decreasing (this
is possible because no synchronization is involved). The last process of the resulting path is
K ′ = K ′1 | K ′2, which satisfies wf (K ′, k + t) and up(K ′, k + t) ≡ KJP ′Kr.

– If P = P̄ [ϕ], then the transition derives from the fact that P̄
t
−; P̄ ′, with P ′ = P̄ ′ [ϕ]. Given

k ∈ N, from the induction hypothesis it follows that there exists K̄ ∈ KP′, having no tran-
sitions of duration zero at time k and satisfying wf (K̄, k) and up(K̄, k) ≡ KJP̄ Kr, such that

K̄ = K0

τ@k0

−−→
t0

K1

τ@k1

−−→
t1
· · ·

τ@km−1

−−→
tm−1

Km = K̄ ′ for some m ∈ N≥1, Ki ∈ KP′ for all 1 ≤ i ≤ m,

ki ∈ N≥k for all 0 ≤ i ≤ m − 1 (with k0 = k and ki ≤ kj for i ≤ j), and ti ∈ N>0 for all
0 ≤ i ≤ m−1, where wf (K̄ ′, k+ t) and up(K̄ ′, k+ t) ≡ KJP̄ ′Kr. We choose K = K̄ [ϕ], which
has no transitions of duration zero at time k and satisfies wf (K, k) and up(K, k) ≡ KJP Kr.

The result then follows by observing that K = K0 [ϕ]
τ@k0

−−→
t0

K1 [ϕ]
τ@k1

−−→
t1
· · ·

τ@km−1

−−→
tm−1

Km [ϕ] =

K̄ ′ [ϕ] = K ′, where K ′ satisfies wf (K ′, k + t) and up(K ′, k + t) ≡ KJP ′Kr.

– If P = recX : P̄ , then the transition derives from the fact that P̄{recX : P̄ ↪→ X}
t
−; P ′.

Given k ∈ N, from the induction hypothesis it follows that there exists K̄ ∈ KP′, having no
transitions of duration zero at time k and satisfying wf (K̄, k) and up(K̄, k) ≡ KJP̄{recX :

P̄ ↪→ X}Kr, such that K̄ = K0

τ@k0

−−→
t0

K1

τ@k1

−−→
t1
· · ·

τ@km−1

−−→
tm−1

Km = K ′ for somem ∈ N≥1, Ki ∈ KP′

for all 1 ≤ i ≤ m, ki ∈ N≥k for all 0 ≤ i ≤ m − 1 (with k0 = k and ki ≤ kj for i ≤ j), and
ti ∈ N>0 for all 0 ≤ i ≤ m− 1, where wf (K ′, k + t) and up(K ′, k + t) ≡ KJP ′Kr. We choose
K = k ⇒ recX : JP̄ Kr, which has no transitions of duration zero at time k and satisfies
wf (K, k) and up(K, k) ≡ KJP Kr because its unfolding k ⇒ JP̄ Kr{recX : JP̄ Kr ↪→ X} is equal
to K̄ by virtue of up(K̄, k) ≡ KJP̄{recX : P̄ ↪→ X}Kr and Lemma 4.3. The result then
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follows by observing that K
τ@k0

−−→
t0

K1

τ@k1

−−→
t1
· · ·

τ@km−1

−−→
tm−1

Km = K ′.

2. Suppose that for all k ∈ N there exists K ∈ KP′, having no transitions of duration zero at time k and

satisfying wf (K, k) and up(K, k) ≡ KJP Kr, such that K = K0

τ@k0

−−→
t0

K1

τ@k1

−−→
t1
· · ·

τ@km−1

−−→
tm−1

Km = K ′ for

some m ∈ N≥1, Ki ∈ KP′ for all 1 ≤ i ≤ m, ki ∈ N≥k for all 0 ≤ i ≤ m− 1 (with k0 = k and ki ≤ kj

for i ≤ j), and ti ∈ N>0 for all 0 ≤ i ≤ m− 1, where wf (K ′, k+ t). The proof that P
t
−; P ′, for some

P ′ ∈ P′TCCS restriction and delay-choice free such that up(K ′, k) ≡ KJP ′Kr, can be done by induction
on the length m of the sequence of transitions originating from K. In particular, the proof of the base
case m = 1 proceeds by induction on the number of operational semantic rules of Table 2 that have

been applied in order to derive the transition K0

τ@k
−−→
t0

K1 and by performing a case analysis based on

the syntactical structure of K.

The fifth preliminary result states that it is possible to “reorder” a sequence of CIPA τ -transitions each
possessing the same timestamp, so to have first those with duration zero (stemming from TCCS action
transitions) and then those with positive duration (arising from TCCS delay transitions). In this way, the
final subsequence of τ -transitions, each with positive duration in the reordered sequence, can be “undone”
through the use of structural congruence, thus maintaining a relationship with the last state reached after
performing the original sequence of τ -transitions. This will be useful in the proof of the full abstraction
result to show the correspondence between the sequences of τ -transitions of the reverse encodings of two
weakly bisimilar TCCS processes.

Lemma 4.7. Let k ∈ N and K ∈ KP′ be such that wf (K, k). For each computation:

K = K0

τ@k
−−→
t0

K1

τ@k
−−→
t1
· · ·

τ@k
−−→
tm−1

Km = K ′

where m ∈ N≥1, Ki ∈ KP′ for all 1 ≤ i ≤ m, and ti ∈ N for all 0 ≤ i ≤ m− 1, there exists a computation:

K = K ′0 (
τ@k
−−→

0
)h K ′h

τ@k
−−→
t′h

· · ·
τ@k
−−→
t′m−1

K ′m = K ′

where h ∈ N≤m, K ′i ∈ KP′ for all h ≤ i ≤ m, and {t′h, . . . , t′m−1} = {ti | 0 ≤ i ≤ m − 1 ∧ ti ∈ N>0},
such that wf (K ′i, k) and K ′i ≡ K ′ for all h ≤ i ≤ m.

Proof Let 0 < h < m to avoid trivial cases. We start by showing that the reordering is possible. For each

0 ≤ i ≤ m− 1 such that ti = 0, assume that Ki

τ@k
−−→

0
Ki+1 is executed by the sequential component κ of Ki.

We observe what follows:

• The component κ cannot have executed any preceding τ -transition in the original sequence with
positive duration. To see this, suppose, by contradiction, that κ has previously executed a τ -transition
of duration t > 0. Then its local clock would become equal to at least k+ t, which implies that the i-th
transition above should have a timestamp strictly greater than k. This contradicts the fact that all
the τ -transitions in the sequence carry the same timestamp k. It thus follows that the i-th transition,
which has duration zero, is independent of any other τ -transition with positive duration executed by
a sequential component κ′ different from κ, hence it can be scheduled before all of them.

• After executing the i-th transition above, the component κ can execute in the original sequence arbi-
trarily many other τ -transitions of duration zero and at most one τ -transition of positive duration. The
latter, if any, occurs independently of any other sequential component κ′ and thus can be scheduled
at any position after all the τ -transitions of duration zero.

We now prove that wf (K ′i, k) and K ′i ≡ K ′ for all h ≤ i ≤ m. First, we notice that wf (K ′i, k) simply follows
from wf (K, k) and the fact that K ′i is a derivative of K. Second, consider the last m − h τ -transitions in
the “reordered” sequence, which all have positive duration. Observe that each of them must be executed by

25



a different sequential component because, if a sequential component κ executed a τ -transition with positive
duration, then its local clock would become greater than k and hence another τ -transition executed by the
same κ would carry a timestamp different from k, which contradicts the fact that all the τ -transitions in
the original sequence carry the same timestamp k. Thus, each of the last m − h τ -transitions is executed
by a different sequential component and corresponds to performing some wait t′i for h ≤ i ≤ m − 1, which
increases the local clock of the sequential component by t′i. The same effect can be produced by directly
applying the structural congruence to each of those sequential components, thereby obtaining K ′i ≡ K ′.

We finally exhibit the full abstraction result for the reverse encoding, whose proof exploits the
correspondences between TCCS transitions and CIPA transitions established by Lemmas 4.4, 4.5, and 4.6,
as well as the possibility of reordering certain sequences of CIPA τ -transitions established by Lemma 4.7.

Theorem 4.8. Let P1, P2 ∈ P′TCCS be restriction and delay-choice free. Then:
P1 ≈TCCS P2 ⇐⇒ JP1Kr ≈CIPA JP2Kr

Proof As JP1Kr≈CIPA JP2Kr iff KJP1Kr≈CIPAKJP2Kr, we show that P1 ≈TCCS P2 ⇐⇒ KJP1Kr ≈CIPA KJP2Kr:

=⇒) Consider the following relation:
BCIPA

TCCS = {(K1,K2) ∈ (KP′)2 | ∃P1, P2 ∈ P′TCCS restriction and delay-choice free and ∃k ∈ N s.t.
P1 ≈TCCS P2 ∧ wf (K1, k) ∧ wf (K2, k) ∧ up(K1, k) ≡ KJP1Kr ∧ up(K2, k) ≡ KJP2Kr}

which is symmetric because so is ≈TCCS. We now prove that it is a CIPA weak timed bisimulation,
from which the result will follow. Indeed, if we choose P1, P2 ∈ P′TCCS restriction and delay-choice free
such that P1 ≈TCCS P2, then for k = 0 the processes K1 = 0 ⇒ JP1Kr and K2 = 0 ⇒ JP1Kr satisfy
wf (K1, k), wf (K2, k), up(K1, k) ≡ KJP1Kr, and up(K2, k) ≡ KJP2Kr. Therefore (K1,K2) ∈ BCIPA

TCCS and
hence K1 ≈CIPA K2. Since K1 = KJP1Kr and K2 = KJP2Kr, it holds that KJP1Kr ≈CIPA KJP2Kr.
Let (K1,K2) ∈ BCIPA

TCCS, so that there exist P1, P2 ∈ P′TCCS restriction and delay-choice free and k ∈ N
such that P1 ≈TCCS P2, wf (K1, k), wf (K2, k), up(K1, k) ≡ KJP1Kr, and up(K2, k) ≡ KJP2Kr:

– If K1

α@k
−−→

0
K ′1 for some α ∈ Act and K ′1 ∈ KP′, where wf (K1, k) implies wf (K ′1, k), then from

Lemma 4.5(2) it follows that P1

α
−−→ P ′1 for some P ′1 ∈ P′TCCS restriction and delay-choice free

such that up(K ′1, k) ≡ KJP ′1Kr. Since P1 ≈TCCS P2, we derive that P2
α̂

==⇒ P ′2 for some P ′2 ∈ P′TCCS

restriction and delay-choice free such that P ′1 ≈TCCS P
′
2. There are two cases:

∗ If an α-transition is performed by P2 or one of its τ -derivatives, then P2
α̂

==⇒ P ′2 coin-

cides with P2 (
τ
−−→)∗

α
−−→ P ′2. From repeated applications of Lemma 4.5(1), it follows that

K2 (
τ@k
−−→

0
)∗

α@k
−−→

0
K ′2 for some K ′2 ∈ KP′ such that wf (K ′2, k) and up(K ′2, k) ≡ KJP ′2Kr.

∗ If no α-transition is performed by P2 or one of its τ -derivatives (possible only when α = τ),
then P ′2 = P2 so, taking K ′2 = K2, it holds that wf (K ′2, k) and up(K ′2, k) ≡ KJP ′2Kr.

In both cases, K2
α̂@k
==⇒

0
K ′2. Since P ′1 ≈TCCS P

′
2, wf (K ′1, k), wf (K ′2, k), up(K ′1, k) ≡ KJP ′1Kr, and

up(K ′2, k) ≡ KJP ′2Kr, it also holds that (K ′1,K
′
2) ∈ BCIPA

TCCS.

– If K1

τ@k
−−→
t
K ′1 for some t ∈ N>0 and K ′1 ∈ KP′, then it means that an initial wait t prefix of K1 has

been executed. By applying Lemma 4.7 to this single-transition sequence (i.e., in the special case
in which h = 0), it follows that wf (K ′1, k) and up(K ′1, k) ≡ KJP1Kr. Let P ′1 = P1 and P ′2 = P2,

so that P ′1 ≈TCCS P
′
2. Let K ′2 = K2, so that K2

τ̂@k
==⇒
t
K ′2 with wf (K ′2, k) and up(K ′2, k) ≡ KJP ′2Kr.

Since P ′1 ≈TCCS P
′
2, wf (K ′1, k), wf (K ′2, k), up(K ′1, k) ≡ KJP ′1Kr, and up(K ′2, k) ≡ KJP ′2Kr, it also

holds that (K ′1,K
′
2) ∈ BCIPA

TCCS.
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⇐=) Consider the following relation:
BTCCS

CIPA = {(P1, P2) ∈ (P′TCCS)2 restriction and delay-choice free | ∃K1,K2 ∈ KP′ and ∃k ∈ N s.t.
K1 ≈CIPA K2 ∧ wf (K1, k) ∧ wf (K2, k) ∧ up(K1, k) ≡ KJP1Kr ∧ up(K2, k) ≡ KJP2Kr}

which is symmetric because so is ≈CIPA. We now prove that it is a TCCS weak timed bisimulation,
from which the result will follow. Indeed, if we choose P1, P2 ∈ P′TCCS restriction and delay-choice free
such that KJP1Kr ≈CIPA KJP2Kr, then for k = 0 the processes K1 = 0 ⇒ JP1Kr and K2 = 0 ⇒ JP2Kr

satisfy wf (K1, k), wf (K2, k), up(K1, k) ≡ KJP1Kr, and up(K2, k) ≡ KJP2Kr. Since K1 = KJP1Kr and
K2 = KJP2Kr, it holds that K1 ≈CIPA K2. Therefore (P1, P2) ∈ BTCCS

CIPA and hence P1 ≈TCCS P2.
Let (P1, P2) ∈ BTCCS

CIPA , so that P1, P2 are restriction and delay-choice free and there exist K1,K2 ∈ KP′
and k∈N such that K1≈CIPAK2, wf (K1, k), wf (K2, k), up(K1, k)≡KJP1Kr, and up(K2, k)≡KJP2Kr:

– If P1

α
−−→ P ′1 for some α ∈ Act and P ′1 ∈ P′TCCS restriction and delay-choice free, then from

Lemma 4.5(1) it follows that K1

α@k
−−→

0
K ′1 for some K ′1 ∈ KP′ such that wf (K ′1, k) and up(K ′1, k) ≡

KJP ′1Kr. SinceK1 ≈CIPA K2, we derive thatK2
α̂@k
==⇒

0
K ′2 for someK ′2 ∈ KP′ such thatK ′1≈CIPAK

′
2,

where wf (K2, k) implies wf (K ′2, k). There are two cases:

∗ If an α-transition at time k of duration 0 is performed by K2 or one of its τ -derivatives, then

K2
α̂@k
==⇒

0
K ′2 coincides with K2 ==⇒ K̂ ′2

α@k
−−→

0
K ′2. Since wf (K2, k), by virtue of well timedness all

the τ -transitions in K2 ==⇒ K̂ ′2 carry the same timestamp k, thus Lemma 4.7 can be applied

to this sequence. It follows that there exists a sequence of transitions K2 (
τ@k
−−→

0
)∗ K̄ ′2 for some

K̄ ′2 ∈ KP′ such that K̄ ′2 ≡ K̂ ′2 and wf (K̄ ′2, k). From repeated applications of Lemma 4.5(2)

starting directly from K2, it follows that P2 (
τ
−−→)∗ P̄ ′2 for some P̄ ′2 ∈ P′TCCS restriction and

delay-choice free such that up(K̄ ′2, k) ≡ KJP̄ ′2Kr. From K̄ ′2 ≡ K̂ ′2, it follows that wf (K̂ ′2, k)
and up(K̂ ′2, k) ≡ KJP̄ ′2Kr. Thus, from a final application of Lemma 4.5(2) to the transition

K̂ ′2
α@k
−−→

0
K ′2, it follows that P̄ ′2

α
−−→ P ′2 for some P ′2 ∈ P′TCCS restriction and delay-choice free

such that up(K ′2, k) ≡ KJP ′2Kr. Summing up, P2 (
τ
−−→)∗

α
−−→ P ′2 with up(K ′2, k) ≡ KJP ′2Kr.

∗ If no α-transition at time k of duration 0 is performed by K2 or one of its τ -derivatives
(possible only when α = τ), then K ′2 = K2 so, taking P ′2 = P2, it holds that wf (K ′2, k) and
up(K ′2, k) ≡ KJP ′2Kr.

In both cases, P2
α̂

==⇒ P ′2. Since K ′1 ≈CIPA K ′2, wf (K ′1, k), wf (K ′2, k), up(K ′1, k) ≡ KJP ′1Kr, and
up(K ′2, k) ≡ KJP ′2Kr, it also holds that (P ′1, P

′
2) ∈ BTCCS

CIPA .

– If P1

t
−; P ′1 for some t ∈ N>0 and P ′1 ∈ P′TCCS restriction and delay-choice free, then from

Lemma 4.6(1) it follows that there exists K̄1 ∈ KP′, having no transitions of duration zero

at time k and satisfying wf (K̄1, k) and up(K̄1, k) ≡ KJP1Kr, such that K̄1 = K1
0

τ@k0

−−→
t0

K1
1

τ@k1

−−→
t1
· · ·

τ@km−1

−−→
tm−1

K1
m = K ′1 for some m ∈ N≥1, K1

i ∈ KP′ for all 1 ≤ i ≤ m, ki ∈ N≥k for all 0 ≤ i ≤ m− 1

(with k0 = k and ki ≤ kj for i ≤ j), and ti ∈ N>0 for all 0 ≤ i ≤ m− 1, where wf (K ′1, k + t) and
up(K ′1, k+ t) ≡ KJP ′1Kr. From up(K̄1, k) ≡ KJP1Kr ≡ up(K1, k), it follows that K̄1 ≡ K1 and, due
to Prop. 4.2, we obtain that K̄1 ≈CIPA K1. From K1 ≈CIPA K2, by transitivity of ≈CIPA it follows
that K̄1 ≈CIPA K2. Thus, K2 must be able to weak-simulate the sequence of m τ -transitions
from K̄1 to K ′1. By definition of ≈CIPA, we have that K2 = K2

0 ==⇒K2
1 ==⇒ · · · ==⇒K2

m = K̄ ′2,
i.e., K2 ==⇒ K̄ ′2, with K1

i ≈CIPA K2
i for all 0 ≤ i ≤ m. In particular, K ′1 ≈CIPA K̄ ′2.

To conclude the proof, we have to demonstrate that P2
t

==⇒ P ′2 for some P ′2 ∈ P′ restriction and
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delay-choice free, together with the existence of K ′2 ∈ KP′ such that K ′1 ≈CIPA K ′2, wf (K ′2, k+ t),
and up(K ′2, k + t) ≡ KJP ′2Kr. There are three cases:

1. If K2 ==⇒ K̄ ′2 is an empty sequence of τ -transitions, i.e., K̄ ′2 = K2, there are two subcases:

(a) If wf (K̄ ′2, k + t), then to infer a t-delay transition for P2 we can use the structural con-
gruence to “undo” one passage of time of duration t in one of the sequential components
of K̄ ′2. In other words, there exists K̄ ′′2 ∈ KP′ such that K̄ ′′2 ≡ K̄ ′2 = K2, wf (K̄ ′′2 , k),

up(K̄ ′′2 , k) ≡ KJP2Kr, and K̄ ′′2
τ@k
−−→
t
K̄ ′2. Since the only transition enabled at time k in

K̄ ′′2 is the one of duration t, K̄ ′′2 has no transitions of duration zero at time k. Thus,

Lemma 4.6(2) can be applied to derive that P2

t
−; P ′2 where up(K̄ ′2, k + t) ≡ KJP ′2Kr.

If we let K ′2 = K̄ ′2, we obtain that P2
t

==⇒ P ′2, K ′1 ≈CIPA K ′2, wf (K ′2, k + t), and
up(K ′2, k + t) ≡ KJP ′2Kr.

(b) Suppose now that ¬wf (K̄ ′2, k + t). It holds, however, that wf (K̄ ′2, k), K ′1 ≈CIPA K̄ ′2, and
wf (K ′1, k + t). Let us first consider the case in which K ′1 6≈CIPA (k + t)⇒ nil, i.e., K ′1 or

one of its τ -derivatives is able to perform a visible transition at a timestamp k̂ ≥ k + t.
Since K ′1 ≈CIPA K̄ ′2, K̄ ′2 must be able to do further τ steps in order to increase its local

clocks and be able to match the visible transition at time k̂. Thus, K̄ ′2 ==⇒K ′′2
τ@k̄
−−→
t′

K ′2 for

some k̄ ∈ N≥k, t′ ∈ N>0, and K ′2,K
′′
2 ∈ KP′ such that wf (K ′2, k+ t) and ¬wf (K ′′2 , k+ t).

Moreover, K ′′2 is chosen in such a way that it has no transitions of duration zero at time k,
which is always feasible because the possibly occurring transitions of duration zero can
be all confined in the K̄ ′2 ==⇒K ′′2 sequence. There are two further subcases:

i. If all the τ -transitions in K̄ ′2 ==⇒K ′′2 have positive duration, it follows that K̄ ′2 ≡ K ′′2 ≡
K ′2. Thus, K̄ ′2 ≈CIPA K ′′2 ≈CIPA K ′2, wf (K ′′2 , k), and up(K ′′2 , k) ≡ KJP2Kr. Since K ′′2
has no transitions of duration zero at time k, Lemma 4.6(2) can be applied to obtain

that P2

t
−; P ′2 with up(K ′2, k + t) ≡ KJP ′2Kr. It follows that P2

t
==⇒ P ′2, K ′1 ≈CIPA K ′2,

wf (K ′2, k + t), and up(K ′2, k + t) ≡ KJP ′2Kr.
ii. If some of the τ -transitions in K̄ ′2 ==⇒K ′′2 have duration zero, they must preserve
≈CIPA. To see this, first notice that they cannot derive from a synchronization of two
visible actions because, in this case, since up(K̄ ′2, k) ≡ KJP2Kr (due to the fact that
K̄ ′2 = K2) and P2 is restriction-free, then the same visible actions could be executed
by K̄ ′2 or one of its τ -derivatives at a timestamp less than k+ t. This would contradict
the hypothesis that K̄ ′2 ≈CIPA K ′1 because K ′1 cannot match any visible action with
timestamp less than k + t. Thus, any τ -transition of duration zero in the considered
sequence must derive from the execution of a wait 0 prefix, which, due to the definition
of the reverse encoding, can only derive from an explicit τ -action in P2.
The wait 0 prefix cannot resolve any choice. Suppose, by contradiction, that the wait 0
prefix is in alternative composition with another subprocess K+ that is able to perform
an action α. If α is a visible action, then it is executable at a timestamp less than
k + t. This, as above, contradicts the fact that K ′1 ≈CIPA K̄ ′2 and wf (K ′1, k + t).
Thus, α must be a τ -action and must have positive duration or, if of duration zero,
must lead to a process that will eventually perform, after a sequence of τ -actions of

duration zero, at least a τ -action of positive duration because K̄ ′2 ==⇒K ′′2
τ@k̄
−−→
t′

K ′2 and

wf (K ′2, k + t). However, this contradicts the fact that P2 is delay-choice free because
there would be, in P2, an alternative composition in which a subprocess operand is able
to let time elapse. This subprocess is the one derived from K+ by possible subsequent
applications of Lemma 4.5(2) and then of Lemma 4.6(2).
The wait 0 prefix cannot lead to a process in which a new choice is introduced. Suppose,
again by contradiction, that the wait 0 prefix leads to a continuation process K ′+ in
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which there is an alternative composition. As in the previous case, the choice must
be among τ -actions because no visible action can be performed at a time less than
k+ t. Moreover, K ′+ must eventually perform τ -actions of positive duration to increase
its local clocks. This leads to the same contradiction as before, because from these
transitions we can derive, through the application of Lemmas 4.5(2) and 4.6(2), that
P2 is not delay-choice free. To sum up, any transition of duration zero in K̄ ′2 ==⇒K ′′2 ,

say K̂
τ@k̄
−−→

0
K̂ ′, derives from a wait 0 prefix that is not in alternative composition with

any other action and that does not introduce any alternative composition. It follows
that K̂ ≈CIPA K̂ ′.

Consider again the sequence of transitions K̄ ′2 ==⇒K ′′2
τ@k̄
−−→
t′

K ′2. To go on with the proof,

recall that K̄ ′2 is such that wf (K̄ ′2, k), up(K̄ ′2, k) ≡ KJP2Kr, and K̄ ′2 ≈CIPA K ′1. Let us
examine the transitions from K̄ ′2 to K ′′2 one after the other. If the transition at hand has
positive duration, its source state is structurally congruent to its target state and hence
it preserves the property of being ≈CIPA-equivalent to K ′1 and structurally congruent to
KJP2Kr (or to a τ -derivative of this) once all local clocks have been decreased by k. If the

transition at hand has duration zero, say K̂
τ@k̄
−−→

0
K̂ ′, we apply Lemma 4.5(2) to derive

that P2

τ
−−→ P̄2 for some P̄2 ∈ P′ restriction and delay-choice free such that wf (K̂ ′, k),

up(K̂ ′, k) ≡ KJP̄2Kr, and K̂ ′ ≈CIPA K ′1. At the end, it holds that K ′′2 ≈CIPA K ′1,
wf (K ′′2 , k), and up(K ′′2 , k) ≡ KJP̂2Kr for some P̂2 ∈ P′ restriction and delay-choice free

such that P2 (
τ
−−→ )∗ P̂2.

Since K ′′2 has no transitions of duration zero at time k and wf (K ′2, k+t), Lemma 4.6(2)

can be applied to the transition K ′′2
τ@k̄
−−→
t′

K ′2. It follows that P̂2

t
−; P ′2 for some P ′2 ∈ P′

restriction and delay-choice free such that up(K ′2, k+ t) ≡ KJP ′2Kr. Moreover, from the

fact that K ′′2
τ@k̄
−−→
t′

K ′2 is a τ -transition of positive duration, it follows that K ′′2 ≡ K ′2 and,

thus, K ′2 ≈CIPA K ′′2 ≈CIPA K ′1. Summing up, it holds that P2
t

==⇒ P ′2, K ′1 ≈CIPA K ′2,
wf (K ′2, k + t), and up(K ′2, k + t) ≡ KJP ′2Kr.

It remains to consider the case in which K̄ ′2 ≈CIPA K ′1 ≈CIPA (k + t) ⇒ nil, i.e., K ′1
and all of its τ -derivatives do not perform any visible action at any timestamp. We can
reason along the same lines of cases 1(b)i and 1(b)ii above, apart from the possibility
that K̄ ′2 is not able to perform enough τ -actions of positive duration to reach a process
in which all the local clocks are greater than or equal to k + t. This could happen when
some of its sequential components are of the form (k + t′) ⇒ nil for some t′ ∈ N<t. In
this case, the structural congruence rule k ⇒ nil ≡ k′ ⇒ nil can be used to find a process
K̂ ′2 ≡ K̄ ′2 in which each of these components is replaced with (k + t′ + (t − t′)) ⇒ nil,
with t′ specific to the component, and then transformed into (k + t′)⇒ wait (t− t′) .nil
through structural congruence. The process K̂ ′2 has the same properties as K̄ ′2, namely
K̂ ′2 ≈CIPA K ′1, wf (K̂ ′2, k), and up(K̂ ′2, k) ≡ KJP2Kr. Thus, it can replace K̄ ′2 to follow the
same lines of the proof of cases 1(b)i and 1(b)ii above without the problem of the missing
τ -transitions of positive duration.

2. If K2 ==⇒ K̄ ′2 is a non-empty sequence of τ -transitions that have the same timestamp k̄ ∈ N≥k,
then we use Lemma 4.7 to reorder the τ -transitions so to expose those of duration zero first.

We obtain that K2 (
τ@k̄
−−→

0
)∗ K̄ ′′2 ==⇒ K̄ ′2 where all the transitions in K̄ ′′2 ==⇒ K̄ ′2 have positive

duration and K̄ ′′2 has no transitions of duration zero at time k̄. From repeated applications

of Lemma 4.5(2), it follows that P2 (
τ
−−→ )∗ P̂2 for some P̂2 ∈ P′ restriction and delay-choice

free such that wf (K̄ ′′2 , k) and up(K̄ ′′2 , k) ≡ KJP̂2Kr. There are two subcases:
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(a) If wf (K̄ ′2, k+t), then K̄ ′′2 ==⇒ K̄ ′2 is not empty and Lemma 4.6(2) can be applied to derive

that P̂2

t
−; P ′2 for some P ′2 ∈ P′ restriction and delay-choice free such that up(K̄ ′2, k+t) ≡

KJP ′2Kr. If we let K ′2 = K̄ ′2, then it follows that P2
t

==⇒ P ′2, K ′1 ≈CIPA K ′2, wf (K ′2, k + t),
and up(K ′2, k + t) ≡ KJP ′2Kr.

(b) If ¬wf (K̄ ′2, k + t), then we can reason along the same lines as case 1b and its subcases
in order to extend the derivation K̄ ′′2 ==⇒ K̄ ′2 by adding the necessary τ -transitions so to
reach a process K ′2 ∈ KP′ satisfying wf (K ′2, k + t) and K ′2 ≈CIPA K ′1. It follows that

P2 (
τ
−−→ )∗ P̂2 (

τ
−−→ )∗ P̂ ′2

t
−; P ′2 for some P̂ ′2, P

′
2 ∈ P′ restriction and delay-choice free

such that up(K ′2, k+ t) ≡ KJP ′2Kr. Hence, again, P2
t

==⇒ P ′2, K ′1 ≈CIPA K ′2, wf (K ′2, k+ t),
and up(K ′2, k + t) ≡ KJP ′2Kr.

3. If K2 ==⇒ K̄ ′2 is a non-empty sequence of τ -transitions that do not have the same timestamp,
we partition it into ` ∈ N≥2 subsequences of τ -transitions respectively having the same
timestamps k̄0 < k̄1 < · · · < k̄`−1, with k̄0 ≥ k. By repeatedly applying Lemma 4.7 to
reorder the τ -transitions so to expose those of duration zero first, the sequence of τ -transitions

becomes K2 = K2
0 (

τ@k0

−−→
0

)∗ K̄2
0 (

τ@k0

−−→
t0

)∗K2
1 · · ·K2

`−1 (
τ@k`−1

−−→
0

)∗ K̄2
`−1 (

τ@k`−1

−−→
t`−1

)∗K2
` = K̄ ′2.

We define a procedure such that at each step i a timed transition of duration t̂i = k̄i − k̄i−1

of process P2 or one of its weakly timed bisimilar derivatives can be derived. A special case
is when i = 0, in which t̂0 = k̄0 − k ≥ 0. The procedure ends whenever a total amount of
time t has elapsed as the sum of all the determined t̂i (possibly with a final remainder) or
when i = `− 1.

At step i = 0, we repeatedly apply Lemma 4.5(2) to derive that P2 (
τ
−−→ )∗ P̂ 2

0 for some
P̂ 2

0 ∈ P′ restriction and delay-choice free such that wf (K̄2
0 , k) and up(K̄2

0 , k) ≡ KJP̂ 2
0 Kr.

There are two subcases:

(a) If k̄0 = k, we use the fact that K2
1 ≡ K̄2

0 – by virtue of the initial application of Lemma 4.7
– to substitute K̄2

0 for K2
1 as starting process of the next step i = 1. Finally, we let

P 2
1 = P̂ 2

0 and t̂0 = 0.
(b) If k̄0 > k, we let t̂0 = k̄0 − k > 0. It holds that wf (K2

1 , k + t̂0) because the transition
leading to K2

1 has timestamp k̄0 = k+ t̂0, thus all the local clocks in K2
1 must be greater

than or equal to k + t̂0 due to the absence of ill-timed paths. Lemma 4.6(2) can then

be applied to the transitions K̄2
0 (

τ@k0

−−→
t0

)∗K2
1 to obtain that P̂ 2

0

t̂0
−; P 2

1 for some P 2
1 ∈ P′

restriction and delay-choice free such that up(K2
1 , k + t̂0) ≡ KJP 2

1 Kr.

Thus, at the end of the first step, we have that P2
t̂0==⇒ P 2

1 (meaning that P2 ==⇒ P 2
1 if t̂0 = 0)

for some P 2
1 ∈ P′ restriction and delay-choice free such that wf (K2

1 , k + t̂0) and up(K2
1 ,

k + t̂0) ≡ KJP 2
1 Kr.

At each step i > 0, we repeatedly apply Lemma 4.5(2) to derive that P 2
i (

τ
−−→ )∗ P̂ 2

i for some

P̂ 2
i ∈ P′ restriction and delay-choice free such that wf (K̄2

i , k +
∑j=i−1
j=0 t̂j) and up(K̄2

i , k +∑j=i−1
j=0 t̂j) ≡ KJP̂ 2

i Kr. Let t̂i = k̄i − k̄i−1 > 0. It holds that wf (K2
i+1, k +

∑j=i
j=0 t̂j) because

the transition leading to K2
i+1 has timestamp k̄i = k̄i−1 + t̂i = k + (

∑j=i−1
j=0 t̂j) + t̂i, thus all

the local clocks in K2
i+1 must be greater than or equal to k̄i due to the absence of ill-timed

paths. Lemma 4.6(2) can then be applied to the transitions K̄2
i (

τ@ki
−−→
ti

)∗K2
i+1 to obtain that

P̂ 2
i

t̂i
−; P 2

i+1 for some P 2
i+1 ∈ P′ restriction and delay-choice free such that up(K2

i+1, k +∑j=i
j=0 t̂j) ≡ KJP 2

i+1Kr. There are three subcases:

(a) If k̄`−1 < k + t and ¬wf (K̄ ′2, k + t), we have shown that P2
t̂

==⇒ P 2
` for some P 2

` ∈ P′

restriction and delay-choice free and t̂ =
∑j=`−1
j=0 t̂j < t such that up(K2

` , k + t̂) ≡
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KJP 2
` Kr. Now, we can reason along the same lines as case 1b and its subcases in order

to extend the derivation from process K̄ ′2 by adding the necessary τ -transitions so to
reach a process K ′2 ∈ KP′ satisfying wf (K ′2, k + t) and K ′2 ≈CIPA K ′1. It then follows

that P 2
` (

τ
−−→ )∗ P̂ ′2

t−t̂
−; P ′2 for some P̂ ′2, P

′
2 ∈ P′ restriction and delay-choice free such

that up(K ′2, k + t) ≡ KJP ′2Kr. Hence, P2
t

==⇒ P ′2, K ′1 ≈CIPA K ′2, wf (K ′2, k + t), and
up(K ′2, k + t) ≡ KJP ′2Kr.

(b) If k̄`−1 < k + t and wf (K̄ ′2, k + t), we have shown that P2
t̂

==⇒ P 2
` for some P 2

` ∈ P′

restriction and delay-choice free and t̂ =
∑j=`−1
j=0 t̂j < t such that up(K2

` , k+ t̂ ) ≡ KJP 2
` Kr.

Now, we can use the structural congruence to “undo” one passage of time of duration t− t̂
in one of the sequential components of K̄ ′2. In other words, there exists K̄ ′′2 ∈ KP′ such

that K̄ ′′2 ≡ K̄ ′2, wf (K̄ ′′2 , k+ t̂), up(K̄ ′′2 , k+ t̂) ≡ KJP 2
` Kr, and K̄ ′′2

τ@k`−1

−−→
t−t̂

K̄ ′2. Since the only

transition enabled at time k+ t̂ in K̄ ′′2 is the one of duration t− t̂, K̄ ′′2 has no transitions of

duration zero at time k+ t̂. Thus, Lemma 4.6(2) can be applied to obtain that P 2
`

t−t̂
−; P ′2

for some P ′2 ∈ P′ restriction and delay-choice free such that up(K̄ ′2, k + t) ≡ KJP ′2Kr.

Now, if we let K ′2 = K̄ ′2, we obtain that P2
t

==⇒ P ′2, K ′1 ≈CIPA K ′2, wf (K ′2, k + t), and
up(K ′2, k + t) ≡ KJP ′2Kr.

(c) If k̄`−1 ≥ k + t, we have shown that P2
t̂

==⇒ P 2
` for some P 2

` ∈ P′ restriction and delay-

choice free and t̂ =
∑j=`−1
j=0 t̂j ≥ t such that up(K2

` , k + t̂) ≡ KJP 2
` Kr. Now, if t̂ = t,

then we let K ′2 = K̄ ′2 and P ′2 = P 2
` to directly obtain that P2

t
==⇒ P ′2, K ′1 ≈CIPA K ′2,

wf (K ′2, k+ t), and up(K ′2, k+ t) ≡ KJP ′2Kr. If, instead, t̂ > t, then we have to stop earlier,
precisely at the latest step (less than ` − 1) such that one of the previous subcases 3a
or 3b applies.

5. Direct Encoding from MTIPP to IML

A direct encoding of MTIPP processes into IML processes under action eagerness can be easily established
by following Def. 3.1, i.e., the direct encoding from CIPA to TCCS. The only important difference is that,
when translating an exponentially timed action <α, λ>, the exponential delay λ must precede – rather than
follow – the instantaneous action α.

We now explain the reason behind this. For example, in the MTIPP process:
<α1, λ1> . 0 +<α2, λ2> . 0

the choice between the two exponentially timed actions is probabilistic in that governed by the race policy.
In contrast, in the IML process:

α1 . (λ1) . 0 + α2 . (λ2) . 0
the choice is nondeterministic. When α1 = α2 = α and λ1 = λ2 = λ, we further observe that the MTIPP
process is ∼MTIPP-equivalent to <α, 2 · λ> . 0 and the IML process is ∼IML-equivalent to α . (λ) . 0, but the
new MTIPP process would be translated into α . (2 · λ) . 0, which is not ∼IML-equivalent to the new IML
process, and hence the encoding would not be fully abstract with respect to strong Markovian bisimilarity.

Therefore, the initial MTIPP process must instead be translated into:
(λ1) . α1 . 0 + (λ2) . α2 . 0

which is ∼IML-equivalent to (2 ·λ) . α . 0 – translation of <α, 2 ·λ> . 0 – when α1 = α2 = α and λ1 = λ2 = λ.
In other words, the instantaneous action in the translation has to witness the completion – rather than the
beginning as in Def. 3.1 – of the execution of the original durational action.
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Definition 5.1. The direct encoding J K : PMTIPP → PIML under action eagerness is defined as follows:
J0K = 0

J<α, λ> .GK = (λ) . α . JGK
JG1 +G2K = JG1K + JG2K
JG1 ‖S G2K = JG1K ‖SJG2K

JG/HK = JGK /H
JG [ϕ]K = JGK [ϕ]

JXK = X
JrecX : GK = recX : JGK

The direct encoding above preserves strong Markovian bisimilarity only for processes that do not include
synchronizations, i.e., in which all the occurrences of the parallel composition operator are of the form ‖∅,
thereby pinpointing the source of the different expressive power of MTIPP and IML under action eagerness.
For example, given the two processes G1 = <a, λ> . 0 and G2 = (<a, λ> . 0 + <b, µ> . 0) ‖{b} 0, we have
that G1 ∼MTIPP G2 because both of them can only perform the exponentially timed action <a, λ>, but
JG1K 6∼IML JG2K because JG2K has a spurious deadlock state deriving from the fact that the exponential delay
µ may elapse before realizing that the instantaneous action b cannot be executed. The presence of spurious
deadlock states is a consequence of the way in which exponentially timed actions have to be translated.
It is worth noting that the synchronization freeness constraint needed for the direct encoding of MTIPP into
IML under action eagerness is analogous to the restriction freeness constraint needed for the direct encoding
of CIPA into TCCS under action eagerness (see Thm. 3.2).

To prove the full abstraction result, we first demonstrate some preliminary results that, in addition to
deal with recursion, establish a correspondence between the transitions of an MTIPP process and sequences
formed by a delay transition and an action transition of the encoded version of that process in IML.

Lemma 5.2. Let G, Ĝ ∈ PMTIPP and X,Y ∈ Var . Then:
JG{recX : Ĝ ↪→ Y }K = JGK{recX : JĜK ↪→ Y }

Proof We proceed by induction on the syntactical structure of G ∈ PMTIPP:

• If G = 0 or G ∈ Var \ {Y }, then:
JG{recX : Ĝ ↪→ Y }K = G = JGK{recX : JĜK ↪→ Y }

• If G = Y , then:
JG{recX : Ĝ ↪→ Y }K = JrecX : ĜK = recX : JĜK = JGK{recX : JĜK ↪→ Y }

• Let G = <α, λ>.G′ and assume that JG′{recX : Ĝ ↪→ Y }K = JG′K{recX : JĜK ↪→ Y }. Then:

JG{recX : Ĝ ↪→ Y }K = J<α, λ> . (G′{recX : Ĝ ↪→ Y })K
= (λ) . α . JG′{recX : Ĝ ↪→ Y }K
= (λ) . α . (JG′K{recX : JĜK ↪→ Y })
= ((λ) . α . JG′K){recX : JĜK ↪→ Y }
= JGK{recX : JĜK ↪→ Y }

• Let G = G1 + G2 and for i ∈ {1, 2} assume that JGi{recX : Ĝ ↪→ Y }K = JGiK{recX : JĜK ↪→ Y }.
Then:

JG{recX : Ĝ ↪→ Y }K = JG1{recX : Ĝ ↪→ Y }+G2{recX : Ĝ ↪→ Y }K
= JG1{recX : Ĝ ↪→ Y }K + JG2{recX : Ĝ ↪→ Y }K
= JG1K{recX : JĜK ↪→ Y }+ JG2K{recX : JĜK ↪→ Y }
= (JG1K + JG2K){recX : JĜK ↪→ Y }
= JGK{recX : JĜK ↪→ Y }

• The case G = G1 ‖S G2 is similar to the previous one.
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• Let G = G′ /H and assume that JG′{recX : Ĝ ↪→ Y }K = JG′K{recX : JĜK ↪→ Y }. Then:

JG{recX : Ĝ ↪→ Y }K = JG′{recX : Ĝ ↪→ Y } /HK
= JG′{recX : Ĝ ↪→ Y }K /H
= JG′K{recX : JĜK ↪→ Y } /H
= (JG′K /H){recX : JĜK ↪→ Y }
= JGK{recX : JĜK ↪→ Y }

• The case G = G′ [ϕ] is similar to the previous one.

• Let G = recX ′ : G′ and assume that JG′{recX : Ĝ ↪→ Y }K = JG′K{recX : JĜK ↪→ Y }:

– If X ′ = Y , then:
JG{recX : Ĝ ↪→ Y }K = JGK = JGK{recX : JĜK ↪→ Y }

– If X ′ 6= Y , then:
JG{recX : Ĝ ↪→ Y }K = JrecX ′ : (G′{recX : Ĝ ↪→ Y })K

= recX ′ : JG′{recX : Ĝ ↪→ Y }K
= recX ′ : (JG′K{recX : JĜK ↪→ Y })
= (recX ′ : JG′K){recX : JĜK ↪→ Y }
= JGK{recX : JĜK ↪→ Y }

Lemma 5.3. Let G ∈ PMTIPP. Then JGK has no action transitions and:∑
α∈Act

ratea(G,α,PMTIPP) = rate(JGK,PIML)

when G is synchronization free:

Proof We proceed by induction on the syntactical structure of G ∈ PMTIPP:

• If G = 0, then JGK = 0 and hence has no action transitions. Moreover:∑
α∈Act

ratea(G,α,PMTIPP) = 0 = rate(JGK,PIML)

with G synchronization free.

• If G = <α, λ> .G′, then JGK = (λ) . α . JP ′K and hence has no action transitions. Moreover:∑
β∈Act

ratea(G, β,PMTIPP) = λ = rate(JGK,PIML)

regardless of G being synchronization free or not.

• Let G = G1+G2 and for i ∈ {1, 2} assume that JGiK has no action transitions. Then JGK = JG1K+JG2K
has no action transitions either. Moreover, from the assumption that

∑
α∈Act ratea(Gi, α,PMTIPP) =

rate(JGiK,PIML) when Gi is synchronization free for i ∈ {1, 2}, it follows that:∑
α∈Act

ratea(G,α,PMTIPP) =
∑

α∈Act

ratea(G1, α,PMTIPP) +
∑

α∈Act

ratea(G2, α,PMTIPP)

= rate(JG1K,PIML) + rate(JG2K,PIML)
= rate(JGK,PIML)

with G synchronization free.

• The case G = G1 ‖∅G2 is similar to the previous one because, due to the emptiness of the synchro-
nization set, the total exit rate of G is again the sum of the total exit rates of G1 and G2. On the
other hand, the total exit rate of JGK can only be the sum of the total exit rates of JG1K and JG2K,
because exponential delays cannot synchronize.

• Let G = G′ /H and assume that JG′K has no action transitions. Then JGK = JG′K /H has no action
transitions either. Moreover, from the assumption that

∑
α∈Actratea(G′, α,PMTIPP) = rate(JG′K,PIML)

when G′ is synchronization free, it follows that:∑
α∈Act

ratea(G,α,PMTIPP) =
∑

α∈Act

ratea(G′, α,PMTIPP) = rate(JG′K,PIML) = rate(JGK,PIML)

with G synchronization free.
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• The case G = G′ [ϕ] is similar to the previous one.

• Let G = recX : G′ and assume that JG′{recX : G′ ↪→ X}K has no action transitions. Then JGK =
recX : JG′K has no action transitions either, as JG′K{recX : JG′K ↪→ X} = JG′{recX : G′ ↪→ X}K
due to Lemma 5.2. Moreover, from the assumption that

∑
α∈Act ratea(G′{recX : G′ ↪→ X}, α,PMTIPP)

= rate(JG′{recX : G′ ↪→ X}K,PIML) when G′{recX : G′ ↪→ X} is synchronization free, it follows that:∑
α∈Act

ratea(G,α,PMTIPP) =
∑

α∈Act

ratea(G′{recX : G′ ↪→ X}, α,PMTIPP)

= rate(JG′{recX : G′ ↪→ X}K,PIML)
= rate(JG′K{recX : JG′K ↪→ X},PIML)
= rate(JGK,PIML)

with G synchronization free.

Lemma 5.4. Let G,G′ ∈ PMTIPP be synchronization free, α ∈ Act , and λ ∈ R>0. Then G
α,λ
−−→G′ iff

JGK
λ
−; F

α
−−→ JG′K for some synchronization-free F ∈ PIML having only that action transition.

Proof Given G,G′ ∈ PMTIPP synchronization free, α ∈ Act , and λ ∈ R>0, the proof is divided into two
parts:

=⇒) Assuming that G
α,λ
−−→G′, we prove that JGK

λ
−; F

α
−−→ JG′K for some synchronization-free F ∈ PIML

having only that action transition by proceeding by induction on the length of the derivation of

G
α,λ
−−→G′, intended as the number n ∈ N≥1 of operational semantic rules of Table 3 that have been

applied in order to derive the considered transition:

– If n = 1, then G = <α, λ> .G′. Therefore JGK = (λ) . α . JG′K
λ
−; α . JG′K

α
−−→ JG′K with α . JG′K

being synchronization free and having only that action transition.

– Let n > 1 and suppose that the result holds for every transition derivable from a synchronization-
free MTIPP process by applying less than n operational semantic rules of Table 3. There are
several cases based on the syntactical structure of G:

∗ If G = G1 +G2, then the transition derives from the fact that Gi
α,λ
−−→G′ for some i ∈ {1, 2}.

From the induction hypothesis, it follows that JGiK
λ
−; F

α
−−→ JG′K for some synchronization-

free F ∈ PIML having only that action transition. Thus JGK = JG1K + JG2K
λ
−; F

α
−−→ JG′K

with F being synchronization free and having only that action transition.

∗ If G = G1 ‖∅G2, then the transition derives from the fact that Gi
α,λ
−−→G′i for some i ∈ {1, 2}.

Without loss of generality, we assume i = 1, so that G′ = G′1 ‖∅G2. From the induction hy-

pothesis, it follows that JG1K
λ
−; F1

α
−−→ JG′1K for some synchronization-free F1 ∈ PIML hav-

ing only that action transition. Thus JGK = JG1K ‖∅JG2K
λ
−; F1 ‖∅JG2K

α
−−→ JG′1K ‖∅JG2K =

JG′K with F1 ‖∅JG2K being synchronization free and having only that action transition because
JG2K has no action transitions by virtue of Lemma 5.3.

∗ If G = Ḡ /H, then the transition derives from the fact that Ḡ
β,λ
−−→ Ḡ′ with G′ = Ḡ′ /H

for some β ∈ Act such that β ∈ H ∪ {τ} if α = τ , β = α otherwise. From the induction

hypothesis, it follows that JḠK
λ
−; F̄

β
−−→ JḠ′K for some synchronization-free F̄ ∈ PIML having

only that action transition. Thus JGK = JḠK /H
λ
−; F̄ /H

α
−−→ JḠ′K /H = JG′K with F̄ /H

being synchronization free and having only that action transition.

∗ The case G = Ḡ [ϕ] is similar to the previous one with β satisfying ϕ(β) = α.
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∗ If G = recX : Ḡ, then the transition derives from the fact that Ḡ{recX : Ḡ ↪→ X}
α,λ
−−→G′.

From the induction hypothesis, it follows that JḠ{recX : Ḡ ↪→ X}K
λ
−; F

α
−−→ JG′K for some

synchronization-free F ∈ PIML having only that action transition. Thus JGK = recX : JḠK
λ
−; F

α
−−→ JG′K because the unfolding of recX : JḠK, i.e., JḠK{recX : JḠK ↪→ X}, is equal to

JḠ{recX : Ḡ ↪→ X}K by virtue of Lemma 5.2.

⇐=) Assuming that JGK
λ
−; F

α
−−→ JG′K for some synchronization-free F ∈ PIML having only that action

transition, the proof that G
α,λ
−−→G′ is similar to the previous one, in the sense that it proceeds by

induction on the number of operational semantic rules on the right-hand side of Table 4 that have

been applied in order to derive the delay transition JGK
λ
−; F and by performing a case analysis based

on the syntactical structure of JGK.

Theorem 5.5. Let G1, G2 ∈ PMTIPP be synchronization free. Then:
G1 ∼MTIPP G2 ⇐⇒ JG1K ∼IML JG2K

Proof The proof is divided into two parts:

=⇒) Consider the relation BIML
MTIPP = B1 ∪ B2 ∪ B3 over PIML where:

B1 = {(JG1K, JG2K) | G1, G2 ∈ PMTIPP synchronization free ∧G1 ∼MTIPP G2}
B2 = {(F1, F2) | F1, F2 ∈ PIML synchronization free ∧

∃G′1, G′2 ∈ PMTIPP synchronization free. G′1 ∼MTIPP G
′
2 ∧

∃α ∈ Act . F1

α
−−→ JG′1K ∧ F2

α
−−→ JG′2K are the only action transitions of F1, F2}

B3 = {(F, F ) | F ∈ PIML not occurring in any pair of B1 ∪ B2}
Relation BIML

MTIPP is an equivalence relation because so is ∼MTIPP. Moreover, it turns out to be an IML
strong Markovian bisimulation, as we show below:

– If we take (JG1K, JG2K) ∈ B1, then by virtue of Lemma 5.3 neither JG1K nor JG2K has action
transitions, hence there are no action transitions to be matched. Given an equivalence class
C ∈ PIML/BIML

MTIPP, there are two cases related to delay transition matching:

∗ If C is originated from B1 ∪ B3, then by virtue of Lemma 5.4 we have that:
rate(JG1K, C) = 0 = rate(JG2K, C)

∗ If C is originated from B2 when considering α ∈ Act and the equivalence class [G′]∼MTIPP ,
then by virtue of Lemma 5.4 and G1 ∼MTIPP G2 we have that:

rate(JG1K, C) = ratea(G1, α, [G
′]∼MTIPP

) = ratea(G2, α, [G
′]∼MTIPP

) = rate(JG2K, C)

– If we take (F1, F2) ∈ B2, then any possible delay transition of F1 and F2 is preempted, under
action eagerness, by the only action transition of F1 and F2, respectively, hence there are no delay

transitions to be matched. As far as action transition matching is concerned, if F1

α
−−→ JG′1K, then

F2

α
−−→ JG′2K with (JG′1K, JG′2K) ∈ B1 ⊆ BIML

MTIPP because G′1 and G′2 are synchronization free and
G′1 ∼MTIPP G

′
2, and vice versa.

⇐=) Consider the relation BMTIPP
IML = B1 ∪ B2 over PMTIPP where:

B1 = {(G1, G2) | G1, G2 ∈ PMTIPP synchronization free ∧ JG1K ∼IML JG2K}
B2 = {(G,G) | G ∈ PMTIPP not synchronization free}

Relation BMTIPP
IML is an equivalence relation because so is ∼IML. Moreover, it turns out to be an MTIPP

strong Markovian bisimulation, as we now show. If we take (G1, G2) ∈ B1 and we consider α ∈ Act
and C ∈ PMTIPP/BMTIPP

IML , there are two cases:

– If C is originated from B2, then:
ratea(G1, α, C) = 0 = ratea(G2, α, C)
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– If C is originated from B1 when considering the equivalence class [JGK]∼IML , then by virtue of
Lemma 5.4 and JG1K ∼IML JG2K we have that:

ratea(G1, α, C) = rate(JG1K, Cα,G) = rate(JG2K, Cα,G) = ratea(G2, α, C)
where Cα,G is the equivalence class of ∼IML containing all the synchronization-free processes F

whose only action transition is F
α
−−→ JG′K ∈ [JGK]∼IML .

6. Reverse Encoding from IML to MTIPP

The definition of a reverse encoding from IML to MTIPP under action eagerness raises issues similar
to those discussed in Sects. 4.1 and 4.2 for the mapping of TCCS to CIPA, especially with respect to the
association of durations with actions. Following Def. 4.1, every exponential delay λ is translated into an
exponentially timed τ -action with rate λ, while every instantaneous action α is transformed into a so-called
immediate action <α,∞>, which takes place at an infinite speed and hence has duration zero [23, 8, 5].

Such immediate actions are added to the syntax of MTIPP and the operational semantic rules of
Table 3 are extended accordingly, by further imposing that no synchronization can take place between
an exponentially timed action and an immediate action and that the synchronization of two identically
named immediate actions is still immediate. Moreover, the strong Markovian bisimilarity of Def. 2.8 is
modified by introducing a double action exit rate check based on the following two values:

ratea(G,α, C, exp) =
∑
{|λ ∈ R>0 | ∃G′ ∈ C. G

α,λ
−−→G′ |}

ratea(G,α, C, imm) =

{
1 if ∃G′ ∈ C. G

α,∞
−−→G′

0 otherwise

We denote by P ′MTIPP the resulting set of process terms, with P′MTIPP being the subset of closed and guarded
process terms, and by ∼′MTIPP the resulting strong Markovian bisimilarity.

Definition 6.1. The reverse encoding J Kr : PIML → P ′MTIPP under action eagerness is defined as follows:
J0Kr = 0

Jα . F Kr = <α,∞> . JF Kr

J(λ) . F Kr = <τ, λ> . JF Kr

JF1 + F2Kr = JF1Kr + JF2Kr

JF1 ‖S F2Kr = JF1Kr ‖SJF2Kr

JF /HKr = JF Kr /H
JF [ϕ]Kr = JF Kr [ϕ]

JXKr = X
JrecX : F Kr = recX : JF Kr

We now show that the reverse encoding above preserves strong Markovian bisimilarity. Unlike Thm. 5.5,
the limitation to synchronization-free processes is not needed, because the order in which instantaneous
action prefixes and exponential delay prefixes alternate in an IML process is preserved in the MTIPP
process produced by the translation, hence so are possible spurious deadlock states. This is different from
the deterministic-time setting, where the reverse encoding from TCCS to CIPA still needs the restriction-
freeness constraint of the direct encoding due to the fact that timelocks are possible only in TCCS.

Lemma 6.2. Let F, F̂ ∈ PIML and X,Y ∈ Var . Then:
JF{recX : F̂ ↪→ Y }K = JF K{recX : JF̂ K ↪→ Y }

Proof Similar to the proof of Lemma 5.2.

Lemma 6.3. Let F, F ′ ∈ PIML, α ∈ Act , and λ ∈ R>0. Then:

1. F
α
−−→ F ′ iff JF Kr

α,∞
−−→ JF ′Kr.

2. F
λ
−; F ′ iff JF Kr

τ,λ
−−→ JF ′Kr.
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Proof Given F, F ′ ∈ PIML, we proceed as follows:

1. Let α ∈ Act . The proof is divided into two parts:

=⇒) Assuming that F
α
−−→ F ′, we prove that JF Kr

α,∞
−−→ JF ′Kr by proceeding by induction on the length

of the derivation of the action transition F
α
−−→ F ′, intended as the number n ∈ N≥1 of operational

semantic rules on the left-hand side of Table 4 that have been applied in order to derive the
considered transition:

– If n = 1, then F = α . F ′. Therefore JF Kr = <α,∞> . JF ′Kr
α,∞
−−→ JF ′Kr.

– Let n > 1 and suppose that the result holds for every transition derivable from an IML
process by applying less than n operational semantic rules on the left-hand side of Table 4.
There are several cases based on the syntactical structure of F :

∗ If F = F1 + F2, then the transition derives from the fact that Fi
α
−−→ F ′ for some

i ∈ {1, 2}. From the induction hypothesis, it follows that JFiKr
α,∞
−−→ JF ′Kr. Thus JF Kr =

JF1Kr + JF2Kr
α,∞
−−→ JF ′Kr.

∗ If F = F1 ‖S F2, there are two subcases:

· If α /∈ S, then the transition derives from the fact that Fi
α
−−→ F ′i for some i ∈ {1, 2}.

Without loss of generality, we assume i = 1, so that F ′ = F ′1 ‖S F2. From the induction

hypothesis, it follows that JF1Kr
α,∞
−−→ JF ′1Kr. Thus JF Kr =JF1Kr ‖SJF2Kr

α,∞
−−→ JF ′1Kr ‖SJF2Kr

= JF ′Kr.

· If α ∈ S, then the transition derives from the fact that Fi
α
−−→ F ′i for all i ∈ {1, 2},

so that F ′ = F ′1 ‖S F ′2. From the induction hypothesis, it follows that JFiKr
α,∞
−−→ JF ′i Kr.

Thus JF Kr = JF1Kr ‖SJF2Kr
α,∞
−−→ JF ′1Kr ‖SJF ′2Kr = JF ′Kr.

∗ If F = F̄ /H, then the transition derives from the fact that F̄
β
−−→ F̄ ′ with F ′ = F̄ ′ /H

for some β ∈ Act such that β ∈ H ∪ {τ} if α = τ , β = α otherwise. From the induction

hypothesis, it follows that JF̄ Kr
β,∞
−−→ JF̄ ′Kr. Thus JF Kr = JF̄ Kr /H

α,∞
−−→ JF̄ ′Kr /H = JF ′Kr.

∗ The case F = F̄ [ϕ] is similar to the previous one with β satisfying ϕ(β) = α.

∗ If F = recX : F̄ , then the transition derives from the fact that F̄{recX : F̄ ↪→ X}
α
−−→ F ′. From the induction hypothesis, it follows that JF̄{recX : F̄ ↪→ X}Kr

α,∞
−−→ JF ′Kr.

Thus JF Kr = recX : JF̄ Kr
α,∞
−−→ JF ′Kr because the unfolding of recX : JF̄ Kr, i.e., JF̄ Kr{recX :

JF̄ Kr ↪→ X}, is equal to JF̄{recX : F̄ ↪→ X}Kr by virtue of Lemma 6.2.

⇐=) Assuming that JF Kr
α,∞
−−→ JF ′Kr, the proof that F

α
−−→ F ′ is similar to the previous one, in the

sense that it proceeds by induction on the number of operational semantic rules of Table 3

that have been applied in order to derive the transition JF Kr
α,∞
−−→ JF ′Kr and by performing a

case analysis based on the syntactical structure of JF Kr.

2. Let λ ∈ R>0. The proof is divided into two parts:

=⇒) Assuming that F
λ
−; F ′, the proof that JF Kr

τ,λ
−−→ JF ′Kr is similar to the one of the first part

of the previous result, in the sense that it proceeds by induction on the number of operational
semantic rules on the right-hand side of Table 4 that have been applied in order to derive the

delay transition F
λ
−; F ′ and by performing a case analysis based on the syntactical structure

of F .

⇐=) Assuming that JF Kr
τ,λ
−−→ JF ′Kr, the proof that F

λ
−; F ′ is similar to the one of the second part

of the previous result, in the sense that it proceeds by induction on the number of operational
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semantic rules of Table 3 that have been applied in order to derive the transition JF Kr
τ,λ
−−→ JF ′Kr

and by performing a case analysis based on the syntactical structure of JF Kr.

Theorem 6.4. Let F1, F2 ∈ PIML. Then:
F1 ∼IML F2 ⇐⇒ JF1Kr ∼′MTIPP JF2Kr

Proof The proof is divided into two parts:

=⇒) Consider the relation BMTIPP
IML = B1 ∪ B2 over P′MTIPP where:

B1 = {(JF1Kr, JF2Kr) | F1, F2 ∈ PIML ∧ F1 ∼IML F2}
B2 = {(G,G) | G ∈ P′MTIPP containing <α, λ> with α 6= τ}

Relation BMTIPP
IML is an equivalence relation because so is ∼IML. Moreover, it turns out to be an MTIPP

strong Markovian bisimulation, as we now show. If we take (JF1Kr, JF2Kr) ∈ B1 and we consider
C ∈ P′MTIPP/BMTIPP

IML , there are two cases:

– If C is originated from B2, then for all α ∈ Act we have that:
ratea(JF1Kr, α, C, exp) = 0 = ratea(JF2Kr, α, C, exp)

ratea(JF1Kr, α, C, imm) = 0 = ratea(JF2Kr, α, C, imm)

– If C is originated from B1 when considering the equivalence class [F ′]∼IML , then by virtue of
Lemma 6.3 and F1 ∼IML F2 we have that:

ratea(JF1Kr, α, C, exp) = 0 = ratea(JF2Kr, α, C, exp)
for α 6= τ and:

ratea(JF1Kr, τ, C, exp) = rate(F1, [F
′]∼IML

) = rate(F2, [F
′]∼IML

) = ratea(JF2Kr, τ, C, exp)
Moreover, given α ∈ Act , from Lemma 6.3 it follows that:

ratea(JF1Kr, α, C, imm) = ratea(JF2Kr, α, C, imm)
iff either both F1 and F2 have an action transition labeled with α to a process in [F ′]∼IML

,
or neither of them has, which is indeed the case because F1 ∼IML F2.

⇐=) Consider the following relation over PIML:
BIML

MTIPP = {(F1, F2) | F1, F2 ∈ PIML ∧ JF1Kr ∼′MTIPP JF2Kr}
Relation BIML

MTIPP is an equivalence relation because so is ∼′MTIPP. Moreover, it turns out to be an
IML strong Markovian bisimulation, as we now show. If we take (F1, F2) ∈ BIML

MTIPP and we consider
C ∈ PIML/BIML

MTIPP, we have that:

– If F1

α
−−→ F ′1 for some α ∈ Act and F ′1 ∈ PIML, then JF1Kr

α,∞
−−→ JF ′1Kr by virtue of Lemma 6.3. From

JF1Kr∼′MTIPPJF2Kr, it follows that JF2Kr
α,∞
−−→ JF ′2Kr for some F ′2∈PIML such that JF ′1Kr∼′MTIPPJF ′2Kr.

As a consequence F2

α
−−→ F ′2 by virtue of Lemma 6.3, with (F ′1, F

′
2) ∈ BIML

MTIPP.

– If F1 and F2 have no action transitions, then by virtue of Lemma 6.3 and JF1Kr ∼′MTIPP JF2Kr we
have that:

rate(F1, C) = ratea(JF1Kr, τ, [G′]∼′MTIPP
, exp) = ratea(JF2Kr, τ, [G′]∼′MTIPP

, exp) = rate(F2, C)
where [G′]∼′MTIPP

is the equivalence class originating C.

7. Variants for Lazy Actions and Maximal Progress

In the last four sections, we have dealt with encodings based on the assumption that action execution
is urgent. In this section, we consider the case in which actions are lazy, in the sense that the beginning of
their execution can be arbitrarily delayed, and the case in which maximal progress is enforced, meaning that
only internal actions must be performed as soon as they get enabled. In both cases, we discuss whether and
how each of the four encodings changes together with the corresponding full abstraction result.
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7.1. Deterministic Time

A lazy variant of TCCS was introduced in [30] by replacing the stopped process 0 with the inactive
process 0 that lets any amount of time pass according to the following additional rule:

0
t
−; 0

and, most importantly, by defining a further rule for delaying action prefix as follows:

α . P
t
−; α . P

with t ∈ N>0 in both selfloop rules. We denote by PTCCS,L the resulting language.
A lazy variant of CIPA was introduced in [13]. This variant allows durational actions to start their

execution at any time instant after the one indicated by the local clocks of the subprocesses participating
in the action execution. However, this is not the only modification. Since in CIPA actions are eager, the
global clock implicitly associated with a process is guaranteed to be equal to the minimum value among
those of the local clocks explicitly associated with the various subprocesses. In lazy CIPA, instead, this is
not necessarily the case, so we have to make sure that no durational action starts its execution at a time
instant before the minimum of the global clock and the local clocks of the subprocesses participating in the
action execution. As a consequence, KP is replaced with the set KPgc of augmented process terms in which
the global clock g ∈ N is made explicit through the following syntax:

K � g
and the operational and bisimulation semantics are extended accordingly, with the rules of Table 2 for
durational action prefix and waiting prefix becoming:

k′ ≥ max(k, g)

(k ⇒ a .Q) � g
a@k′

−−→
∆(a)

((k′ + ∆(a))⇒ Q) � k′

k′ ≥ max(k, g)

(k ⇒ wait t .Q) � g
τ@k′

−−→
t

((k′ + t)⇒ Q) � k′

We denote by PCIPA,L the resulting language and by ∼CIPA,L and ≈CIPA,L the resulting bisimilarities.
The direct encoding J KL : PCIPA,L → PTCCS,L from lazy CIPA to lazy TCCS is the same as the

one of Def. 3.1 from eager CIPA to eager TCCS, with the difference that nil is directly translated into 0.
It preserves strong timed bisimilarity without the limitation to restriction-free processes of Thm. 3.2, because
in TCCS lazy actions let time advance also when occurring in a restriction set.

Theorem 7.1. Let Q1, Q2 ∈ PCIPA,L. Then:
Q1 ∼CIPA,L Q2 ⇐⇒ JQ1KL ∼TCCS JQ2KL

Proof See [12].

The reverse encoding J Kr
L : PTCCS,L → P ′CIPA,L from lazy TCCS to modified lazy CIPA is the same as

the one of Def. 4.1 from modified eager TCCS to modified eager CIPA. It preserves weak timed bisimilarity
without the limitation to restriction-free processes of Thm. 4.8 for the same reason explained before Thm. 7.1.
Moreover, we observe that the other constraint of Thm. 4.8, i.e., delay-choice freeness, boils down to the
absence of occurrences of the alternative composition operator, as in TCCS any lazy action can let time
advance and hence cannot prevent delay transitions from being executed.

Theorem 7.2. Let P1, P2 ∈ PTCCS,L be delay-choice free. Then:
P1 ≈TCCS P2 ⇐⇒ JP1Kr

L ≈CIPA,L JP2Kr
L

Proof Similar to the proof of Thm. 4.8.

To obtain a maximal-progress variant of TCCS, we have to add the same two selfloop rules introduced
for lazy TCCS, with the premise α 6= τ in the second one. Moreover, we have to enforce the eagerness of
τ -actions arising from the synchronization of a visible action with its coaction. This is accomplished by
modifying the delay transition rule for parallel composition of Table 1 as follows:

P1

t
−; P ′1 P2

t
−; P ′2 ¬(P1

a
−−→ P̂1 ∧ P2

ā
−−→ P̂2)

¬(P1

t′

−; P̃1 ∧ P2

t′

−; P̃2 ∧ P̃1

b
−−→ P̃ ′1 ∧ P̃2

b̄
−−→ P̃ ′2 ∧ t′ < t)

P1 | P2

t
−; P ′1 | P ′2
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We denote by PTCCS,MP the resulting language.
Likewise, in a maximal-progress variant of CIPA, an explicit global clock is necessary as in lazy CIPA,

with the premise of the rule for waiting prefix becoming k′ = max(k, g). Moreover, we have to enforce
the eagerness of τ -actions arising from the synchronization of a visible action with its coaction. This is
accomplished by modifying the rule for synchronization of lazy CIPA (an extension of the one of Table 2)
as follows:

K1 � g
a@k
−−→
∆(a)

K ′1 � g′ K2 � g
ā@k
−−→
∆(a)

K ′2 � g′ ¬(K1 � g
b@k′

−−→
∆(b)

K̃1 � g̃ ∧ K2 � g
b̄@k′

−−→
∆(b)

K̃2 � g̃ ∧ k′ < k)

(K1 | K2) � g
τ@k
−−→
∆(a)

(K ′1 | K ′2) � g′

We denote by PCIPA,MP the resulting language and by ∼CIPA,MP and ≈CIPA,MP the resulting bisimilarities.
The direct encoding J KMP : PCIPA,MP → PTCCS,MP from maximal-progress CIPA to maximal-progress

TCCS is the same as the one for the lazy case. It preserves strong timed bisimilarity without the limitation
to restriction-free processes of Thm. 3.2, because the only eager action, τ , cannot occur in a restriction set.

Theorem 7.3. Let Q1, Q2 ∈ PCIPA,MP. Then:
Q1 ∼CIPA,MP Q2 ⇐⇒ JQ1KMP ∼TCCS JQ2KMP

Proof Similar to the proof of Thm. 7.1.

The reverse encoding J Kr
MP : PTCCS,MP → P ′CIPA,MP from maximal-progress TCCS to modified maximal-

progress CIPA is the same as the one of Def. 4.1 from modified eager TCCS to modified eager CIPA.
It preserves weak timed bisimilarity without the limitation to restriction-free processes of Thm. 4.8 for the
same reason explained before Thm. 7.3. Moreover, we observe that the other constraint of Thm. 4.8, i.e.,
delay-choice freeness, implies that the only occurrences of the alternative composition operator admitted in
a TCCS process are those in which each subprocess operand can only perform τ -transitions.

Theorem 7.4. Let P1, P2 ∈ PTCCS,MP be delay-choice free. Then:
P1 ≈TCCS P2 ⇐⇒ JP1Kr

MP ≈CIPA,MP JP2Kr
MP

Proof Similar to the proof of Thm. 7.2.

7.2. Stochastic Time

Unlike TCCS, introducing a selfloop rule for delaying action prefix is not appropriate in IML.
The reason is that stochastic time resolves choices due to the adoption of the race policy, hence addi-
tional delay transitions may interfere with the resolution of nondeterministic choices among actions. To
achieve action laziness in IML, we have to change the bisimulation semantics, not the operational semantics.
This is accomplished by modifying the second clause of Def. 2.10 in such a way that the exit rate equality
check is always performed, so that no delay transition is neglected in the bisimulation game. We denote by
∼IML,L the resulting bisimilarity.

The operational semantic rules of Table 3 also give rise to a lazy variant of MTIPP. This stems from the
possibility of delaying the beginning of action execution inherent to the memoryless property of exponentially
distributed durations. Indeed, if an exponentially timed action does not finish its execution within t time
units, the residual execution time has the same distribution as the whole action duration, hence the beginning
of the execution of the action can be thought of as being delayed by t time units with respect to the instant
in which the action has become enabled.

The direct encoding J KL : PMTIPP → PIML from lazy MTIPP to lazy IML is the same as the one of
Def. 5.1 from eager MTIPP to eager IML. It preserves strong Markovian bisimilarity only for sequential
processes, i.e., processes with no occurrences of the parallel composition operator, which is a limitation
stronger than the synchronization freeness of Thm. 5.5.

As an example, given G1 = <α, λ> . 0 ‖∅<β, µ> . 0 and G2 = <α, λ> .<β, µ> . 0 + <β, µ> .<α, λ> . 0,
we have that G1 ∼MTIPP G2 thanks to the memoryless property of exponential distributions, but
JG1KL 6∼IML,L JG2KL because the former contains states having both action transitions and delay transitions
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– with both kinds of transition being considered in the bisimulation game due to the lazy interpretation of
action execution – whereas this is not the case with the latter. In other words, non-synchronizing concurrent
MTIPP subprocesses give rise to an IML process in which some states may have both kinds of transition,
while this is not possible with the sequential MTIPP process obtained from the interleaving of the original
MTIPP subprocesses.

Theorem 7.5. Let G1, G2 ∈ PMTIPP be sequential. Then:
G1 ∼MTIPP G2 ⇐⇒ JG1KL ∼IML,L JG2KL

Proof Similar to the proof of Thm. 5.5. In particular, we observe that, under the sequentiality assumption,
which implies the absence of ‖∅ operators, the α-transition of Lemma 5.4, mentioned as the only action
transition of F , is indeed the only transition of F .

The reverse encoding J Kr : PIML → P ′MTIPP from lazy IML to modified lazy MTIPP is the same as
the one of Def. 6.1 from eager IML to modified eager MTIPP. It preserves strong Markovian bisimilarity
without the limitation to sequential processes of Thm. 7.5, because the possible presence of states having
both action transitions and delay transitions in an IML process is preserved in the MTIPP process produced
by the reverse encoding. Not even the limitation to synchronization-free processes of Thm. 5.5 is necessary,
because the order in which instantaneous actions and exponential delays alternate in an IML process is
preserved in the MTIPP process produced by the reverse encoding, hence so are possible spurious deadlocks.

Theorem 7.6. Let F1, F2 ∈ PIML. Then:
F1 ∼IML,L F2 ⇐⇒ JF1Kr

L ∼′MTIPP JF2Kr
L

Proof Similar to the proof of Thm. 6.4.

To obtain a maximal-progress variant of IML – thus retrieving the original version of [21] – we have to
change the bisimulation semantics again. This is accomplished by modifying the second clause of Def. 2.10
in such a way that the exit rate equality check is performed only when neither the challenger F1 nor the
defender F2 has τ -transitions. We denote by ∼IML,MP the resulting bisimilarity.

The operational semantic rules of Table 3 produce a maximal-progress variant of MTIPP too. The
reason is that maximal progress is in some sense between eagerness and laziness, and both the latter two
are expressed by the considered rules.

The direct encoding J KMP : PMTIPP → PIML from maximal-progress MTIPP to maximal-progress IML
is the same as the one of Def. 5.1 from eager MTIPP to eager IML. It preserves strong Markovian bisimilarity
only for sequential processes, which is a limitation stronger than the synchronization freeness of Thm. 5.5,
for the same reason exemplified before Thm. 7.5 (where JG1KMP ∼IML,MP JG2KMP only for α = τ = β).

Theorem 7.7. Let G1, G2 ∈ PMTIPP be sequential. Then:
G1 ∼MTIPP G2 ⇐⇒ JG1KMP ∼IML,MP JG2KMP

Proof Similar to the proof of Thm. 7.5.

The reverse encoding J Kr : PIML → P ′MTIPP from maximal-progress IML to modified maximal-progress
MTIPP is the same as the one of Def. 6.1 from eager IML to modified eager MTIPP. It preserves strong
Markovian bisimilarity over all processes for the same reasons explained before Thm. 7.6.

Theorem 7.8. Let F1, F2 ∈ PIML. Then:
F1 ∼IML,MP F2 ⇐⇒ JF1Kr

MP ∼′MTIPP JF2Kr
MP

Proof Similar to the proof of Thm. 7.6.
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8. Conclusions

In this paper, we have performed a study of the comparative expressiveness of integrated-time process
calculi, in which actions are durational, and orthogonal-time process calculi, in which actions are instan-
taneous and delays are expressed separately. Starting from [12], where a fully abstract encoding from the
former calculi to the latter ones was provided in the deterministic-time setting, here we have addressed the
opposite direction, as well as both directions in the stochastic-time setting.

In general, it is well known that orthogonal-time calculi are more expressive than integrated-time ones.
The reason is that the former permit to describe untimed processes too; moreover, in the stochastic-time
setting, they also provide modeling support for nondeterminism, intended as implementation/scheduling
freedom or lack of information. Nevertheless, it is worth investigating their comparative expressiveness in
more detail, and under different action interpretations such as eagerness, laziness, and maximal progress,
to pinpoint the specific circumstances in which durational and durationless actions are interchangeable.

8.1. Summary of Results for the Deterministic-Time Setting

In this setting, it is the reverse encoding from TCCS to CIPA developed in this paper that has em-
phasized the higher expressive power of the former calculus with respect to the latter. While it is natural
to translate a CIPA action into a TCCS action followed by a TCCS delay (in this order to comply with
CIPA operational semantics), the translation of TCCS actions and delays has not been obvious. Likewise,
it has been technically involved to establish a correspondence between TCCS delay transitions and CIPA
transitions. It was not necessary to create this correspondence in the study of the direct encoding of [12]
due to the way CIPA actions were translated.

Additionally, the reverse encoding has elicited not only the fact that timelocks are possible only in
TCCS – as the direct encoding did – but also the different support to time additivity in TCCS and CIPA
– witnessed by the possibility of preserving only weak timed bisimilarity – and the different influence that
time has with respect to choice resolution in TCCS and CIPA – witnessed by the necessity of an additional
constraint to achieve full abstraction. A fact common to both encodings is that the number of constraints
needed to achieve full abstraction decreases when moving from eagerness to laziness and maximal progress:

• Direct encoding from CIPA to TCCS. This was provided in [12] (see Def. 3.1) together with the
following full abstraction results with respect to strong timed bisimilarity:

– Eagerness. Bisimilarity is preserved only over restriction-free processes (Thm. 3.2), because in
TCCS the restriction operator may cause timelocks that are not possible in CIPA.

– Laziness. Bisimilarity is preserved over all processes (Thm. 7.1), because in TCCS lazy actions
let time advance also when occurring in a restriction set.

– Maximal progress. Bisimilarity is preserved over all processes (Thm. 7.3), because the only eager
action, τ , cannot occur in a restriction set.

• Reverse encoding from TCCS to CIPA. This is given in Def. 4.1. It has required some slight modifi-
cations to both calculi in order to address the issues raised at the end of [12]. We have shown that it
cannot preserve strong timed bisimilarity due to further issues related to the fact that, while TCCS
supports time additivity through its operational semantic rules, CIPA supports time additivity only
for waitings through its weak bisimulation semantics. This difference did not emerge in the direct
encoding of [12] because of the strict alternation of action prefixes and delay prefixes in the TCCS
processes produced by the encoding itself. For the reverse encoding, we have proved the following full
abstraction results with respect to weak timed bisimilarity:

– Eagerness. Bisimilarity is preserved only over processes that are both restriction-free and delay-
choice-free (Thm. 4.8). Restriction freeness is necessary because in TCCS the restriction operator
may cause timelocks that are not possible in CIPA, precisely as in the direct encoding. Delay-
choice freeness is also necessary because in TCCS time does not resolve choices, while in CIPA
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time passing is associated with action execution and explicit waitings, hence the operational
semantic rules for alternative composition of the two calculi produce transitions among which a
correspondence cannot always be established. Not even this difference between TCCS and CIPA
emerged in the direct encoding of [12] because of the absence of initial delay prefixes in the TCCS
processes produced by the encoding itself.

– Laziness. Bisimilarity is preserved only over delay-choice-free processes (Thm. 7.2). As in the
direct encoding, restriction freeness is no longer necessary because in TCCS lazy actions let time
advance also when occurring in a restriction set. Delay-choice freeness boils down to the absence
of occurrences of the alternative composition operator, as in TCCS any lazy action can let time
advance and hence cannot prevent delay transitions from being executed.

– Maximal progress. Bisimilarity is preserved only over delay-choice-free processes (Thm. 7.4). As
in the direct encoding, restriction freeness is no longer necessary because the only eager action,
τ , cannot occur in a restriction set. Delay-choice freeness implies that the only occurrences of the
alternative composition operator admitted in a TCCS process are those in which each subprocess
operand can only perform τ -transitions.

8.2. Summary of Results for the Stochastic-Time Setting

In this setting, it is again the reverse encoding to reveal the different expressive power between IML and
MTIPP. While it is natural to translate an MTIPP action into an IML delay followed by an IML action
(in this order to comply with the race policy), the translation of IML actions has required the introduction
of immediate actions in MTIPP. Surprisingly, unlike the deterministic-time setting, constraints are not
necessary to achieve full abstraction in the reverse encoding, while they are essential in the direct encoding
and become tighter when moving from eagerness to laziness and maximal progress:

• Direct encoding from MTIPP to IML. This is given in Def. 5.1. While the direct encoding from CIPA
to TCCS translates any durational action into an instantaneous action followed by a fixed delay – as
CIPA operational semantics keeps track of the time at which an action begins its execution – we have
shown that the race policy imposes a different order: any durational action has to be translated into an
exponential delay followed by an instantaneous action. For the direct encoding from MTIPP to IML,
we have proved the following full abstraction results with respect to strong Markovian bisimilarity:

– Eagerness. Bisimilarity is preserved only over synchronization-free processes (Thm. 5.5), because
the IML processes produced by the encoding may have spurious deadlock states – due to the
way in which exponentially timed actions must be translated – that are not possible in the
original MTIPP processes. This synchronization-freeness constraint can be viewed as the dual
of the restriction-freeness constraint of the direct encoding from CIPA to TCCS because, on the
orthogonal-time side, the former avoids deadlocks while the latter avoids timelocks.

– Laziness. Bisimilarity is preserved only over sequential processes (Thm. 7.5), which constitute a
proper subset of synchronization-free processes. The reason is that non-synchronizing concurrent
MTIPP subprocesses give rise to an IML process in which some states may have both action
transitions and delay transitions – with the former not pre-empting the latter as actions are lazy
– while this is not possible with the sequential MTIPP process obtained from the interleaving of
the original MTIPP subprocesses.

– Maximal progress. Bisimilarity is preserved only over sequential processes (Thm. 7.7)
for the same reason explained in the previous case, with the only difference that in IML
action transitions take precedence over delay transitions when the action is τ .

• Reverse encoding from IML to MTIPP. This is given in Def. 6.1. Unlike the reverse encoding from
TCCS to CIPA, it has required some significant language modifications, but only on the integrated-
time side, i.e., only to MTIPP. For the reverse encoding from IML to MTIPP, we have proved the
following full abstraction results with respect to strong Markovian bisimilarity:

43



– Eagerness. Bisimilarity is preserved over all processes (Thm. 6.4). Synchronization-freeness
required by the direct encoding is no longer necessary, because the order in which instantaneous
actions and exponential delays alternate in an IML process is preserved in the MTIPP process
produced by the reverse encoding, hence so are possible spurious deadlock states. This is different
from the deterministic-time setting, where the reverse encoding still needs the restriction-freeness
constraint of the direct encoding.

– Laziness. Bisimilarity is preserved over all processes (Thm. 7.6). Sequentiality required by the
direct encoding is no longer necessary, because the possible presence of states having both action
transitions and delay transitions in an IML process is preserved in the MTIPP process produced
by the reverse encoding. Even synchronization-freeness is no longer necessary for the same reason
explained in the previous case.

– Maximal progress. Bisimilarity is preserved over all processes (Thm. 7.8) for the same reasons
explained in the previous case.

8.3. Language Modifications and Full Abstraction Constraints

Unlike the formulation of the direct encoding from CIPA to TCCS introduced in [12] (see Def. 3.1), the
reverse encoding of Def. 4.1 can be designed only after allowing the stopped process of TCCS to let time pass
as in [30] and after introducing zero durations and zero waitings in CIPA. We observe that these language
modifications alter only slightly the expressiveness of the considered process languages. The full abstraction
of both encodings is inevitably limited to restriction-free processes under action eagerness, meaning that
synchronizations can take place but cannot be enforced. Moreover, the additional delay-choice-freeness
constraint is necessary for the reverse encoding. Since time does not resolve choices in TCCS, this is not a
severe limitation.

The formulation of the direct encoding from MTIPP to IML of Def. 5.1 does not require any language
modification, while the reverse encoding of Def. 6.1 calls for the introduction of immediate actions in MTIPP,
which significantly enhance the expressive power with a performance abstraction capability. In contrast,
the full abstraction result is valid for all processes in the case of the reverse encoding, but for the direct
encoding it is valid only over synchronization-free processes or sequential processes, depending on whether
the action execution interpretation is eagerness or not, which is quite restrictive.

A precise formalization of the impact of the above-mentioned language modifications and full abstraction
constraints on the expressiveness of the considered calculi is outside the scope of this paper.

8.4. Possible Uses of the Proposed Encodings

Defining encodings between different languages is useful not only to formalize the circumstances under
which the considered languages have identical or different expressiveness. Indeed, the presence of encodings
permits the interchange of concepts, modeling methodologies, and analysis techniques.

For instance, the reverse encoding from TCCS to CIPA can be exploited for a more efficient equivalence
checking of TCCS processes based on the compact representation of CIPA processes developed in [12], which
gives rise to finite state spaces in spite of the presence of local clocks within states. As another example,
the reverse encoding from IML to MTIPP can be employed to obtain descriptions that are closer to the
underlying continuous-time Markov chains, so to enhance the confidence of performance modelers familiar
with those stochastic processes.

8.5. Future Work

We would like to continue the investigation started in [9] to compare in the uniform framework of
ULTraS [7] the various deterministically timed and stochastically timed models and languages that have
been proposed in the literature. This is not an easy task, as the differences between deterministic time and
stochastic time are far more radical than those between integrated time and orthogonal time.

As mentioned in this paper, in the deterministic-time setting the resolution of choices is nondeterministic
and not affected by time, while in the stochastic-time setting it can be influenced by time, in which case it is
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probabilistic. Moreover, we have seen that in the deterministic-time setting laws such as time determinism
and time additivity are usually enforced, and that the different action interpretations are implemented
through the operational semantic rules. In the stochastic-time setting, instead, there are no analogous laws.
Moreover, the different action interpretations are implemented through the bisimulation semantics in the
orthogonal-time case, while the distinction among them is blurred by the memoryless property of exponential
distributions in the integrated-time case.
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