
Fundamenta Informaticae 1

IOS Press

A Notion of Non-Interference for Timed Automata

Roberto Barbuti

Dipartimento di Informatica, Università di Pisa

Corso Italia, 40 - 56125 Pisa - Italy

email: barbuti@di.unipi.it

Nicoletta De Francesco

Dipartimento di Ingegneria dell’Informazione, Università di Pisa

Via Diotisalvi, 2 - 56126 Pisa - Italy

email: nicoletta.defrancesco@iet.unipi.it

Antonella Santone

Facoltà di Ingegneria, Università del Sannio

Palazzo Bosco Lucarelli, Piazza Roma - 82100 Benevento - Italy

email: santone@unisannio.it

Luca Tesei

Dipartimento di Informatica, Università di Pisa

Corso Italia, 40 - 56125 Pisa - Italy

email: tesei@di.unipi.it

Abstract. The non-interference property of concurrent systems is a security property con-

cerning the flow of information among different levels of security of the system. In this

paper we introduce a notion of timed non-interference for real-time systems specified by

timed automata. The notion is presented using an automata based approach and then it is

characterized also by operations and equivalence between timed languages. The definition is

applied to an example of a time-critical system modeling a simplified control of an airplane.

1. Introduction

The non-interference property, introduced in [10], is a security property concerning the flow of

information among different levels of security present in the system. Suppose, for simplicity, that

the security levels are two: high and low. Thus, the behaviors of the system are divided into

2 Barbuti et al. /A Notion of Non-Interference for Timed Automata

two classes: the high-level behaviors executed by high-level users and the low-level behaviors

executed by low-level users. Moreover, the system can be observed by users at different levels.

In particular high-level behaviors should not be visible to low-level users. The system respects

the non-interference property if the low-level behaviors are not affected by the high-level ones.

In other words, if a system P acts in an environment where low-level and high-level users are

present and are doing all that they can do, P is secure if the observations that P offers to the

low-level users when high-level behaviors are present and hidden are equal, in some suitable

sense, to the ones that P offers when no high-level behavior is present.

The initial idea has been fruitful in the framework of security, especially in the 90’s. It

has been applied, for instance, to non-deterministic systems described by a CCS-like process

algebra [7, 8, 5], to the analysis of security protocols [6], to probabilistic systems [15] and to

information flows in a timed process algebra with discrete time domain [9]. Different notions of

non-interference proposed in the literature have been compared and summarized in [5, 12]. An

overview of some important questions concerning non-interference definitions, in a CSP setting,

can be found in [13].

In this paper we define a notion of non-interference for real-time systems, where the time

is a crucial parameter. We represent these systems by timed automata [2], which are a well-

known formalism to describe qualitative and quantitative time constraints on systems. Timed

automata have been widely studied also for their possible use in the verification of real-time

systems [3, 1, 16, 11].

To define our notion of non-interference, we partition the alphabet of the timed automaton,

representing a real-time system, in two classes: high-level actions and low-level actions. Our

notion of timed non-interference depends on a natural number n representing a minimum delay

between high-level actions such that the low-level behaviors are not affected by the high-level

ones. Thus, this notion is suitable to detect interference due to high frequency of high-level

actions. An intuitive example of this interferences is the following. Consider a timed automaton

T that models a speed-dependent real-time system like an airplane control system. It has to

control a lot of basic events and has to respond with basic actions in order to maintain, say, the

flight stability. These actions and events may be considered low-level actions and are always

activated. When the pilot decides, for example, to turn right, he uses the cloche and this may

correspond to an occurrence of a high-level action. Thus, the system receives high-level events

(in this case cloche movements signals) separated by certain delays; it must respond to them

and must continue to catch and manage basic events. When this happens we say that high-level

actions delays magnitude does not affect the basic behavior of the system. Intuitively if the

cloche movements signals are sent to the automaton with a too much high frequency, it could

reach a state in which it is no longer able to manage basic events.

We use an automata based approach to define the non-interference property of a system and

then we give also a timed language characterization to justify more formally the operations de-

fined by means of certain special automata and of a simplified product between timed automata.

The definition of the timed non-interference is given using timed automata equivalence which

Barbuti et al. /A Notion of Non-Interference for Timed Automata 3

is a suitable equivalence for our purposes, but it is not effectively computable. We discuss this

problem and define some possible ways to address it in Section 5.

The paper is organized as follows: Section 2 recalls timed automata, Section 3 defines the

timed non-interference for timed automata, Section 4 shows an example, and Section 5 discusses

the results and future work.

2. Timed Automata

In this section we recall the definition of timed automata [2]. In the following, R is the set of real

numbers and R+ the set of non-negative real numbers. A clock takes values from R+. Given a

set X of clocks, a clock valuation over X is a function assigning a non-negative real number to

every clock. The set of valuations of X , denoted VX , is the set of total function from X to R+.

Given ν ∈ VX and δ ∈ R+, with ν + δ we denote the valuation that maps each clock x ∈ X into

ν(x) + δ.

Given a set X of clocks, a reset γ is a subset of X . The set of all resets of X is denoted by

ΓX . Given a valuation ν ∈ VX and a reset γ, with ν\γ we denote the valuation

ν\γ(x) =

0 if x ∈ γ

ν(x) if x 6∈ γ

Given a set X of clocks, the set ΨX of clock constraints over X are defined by the following

grammar:

ψ ::= true | false | ψ ∧ ψ | ψ ∨ ψ | ¬ψ | x#t | x− y#t

where x, y ∈ X , t ∈ R+, and # is a binary operator in {<,>,≤,≥,=}. Clock constraints are

evaluated over clock valuations. The satisfaction by a valuation ν ∈ VX of the clock constraint

ψ ∈ ΨX is denoted by ν |= ψ and it is defined as follows:

ν |= true and ν 6|= false

ν |= ψ1 ∧ ψ2 iff ν |= ψ1 ∧ ν |= ψ2

ν |= ψ1 ∨ ψ2 iff ν |= ψ1 ∨ ν |= ψ2

ν |= ¬ψ iff ν 6|= ψ

ν |= x#t iff ν(x)#t

Definition 2.1. (Timed automaton) A timed automaton T is a tuple

(Q,Σ, E , I, R,X), where: Q is a finite set of states, Σ is a finite alphabet of actions, E is a finite

set of edges, I ⊆ Q is the set of initial states, R ⊆ Q is the set of repeated states, X is a finite

set of clocks. Each edge e ∈ E is a tuple in Q×ΨX × ΓX × Σ×Q.

If e = (q, ψ, γ, σ, q′) is an edge, q is the source, q′ is the target, ψ is the constraint, σ is the

label, γ is the reset.

4 Barbuti et al. /A Notion of Non-Interference for Timed Automata

The semantics of a timed automaton T is an infinite transition system S(T) = (S,→), where

S is a set of states and → is the transition relation. The states S of S(T) are pairs (q, ν), where

q ∈ Q is a state of T , and ν is a valuation. An initial state of S(T) is a state (q, ν), where q ∈ I

is an initial state of T and ν is the valuation which assigns 0 to every clock in X . At any state

q, given a valuation ν, T can stay idle or it can perform an action labeling an outgoing edge e.

The rules to derive the transitions of S(T) are the following:

1.
δ ∈ R+

(q, ν)
δ

−→(q, ν + δ)
2.

(q, ψ, γ, σ, q′) ∈ E , ν |= ψ

(q, ν)
σ

−→(q′, ν\γ)

Rule 1. represents the case in which T stays idle in a state and the time passes, while Rule

2. corresponds to the occurrence of an action.

Definition 2.2. (run, action sequence) Given a timed automaton

T = (Q,Σ, E , I, R,X), a run of the automaton is an infinite sequence of states and transitions

of S(T) s0
l0−→ s1

l1−→ . . . where

- s0 = (q, ν), q ∈ I and ν(x) = 0 for every x ∈ X

- a state q ∈ R exists such that q occurs infinitely often in the pairs of the sequence {si}i∈IN

Note that, given a run s0
l0−→ s1

l1−→ . . ., for each i, li ∈ (Σ ∪R+).

Let r be a run.

- The time sequence tj of the time elapsed from state s0 to state sj in r is defined as follows:

t0 = 0

ti+1 = ti +

0 if li ∈ Σ

li otherwise

- The event sequence of the events occurring during r, including the elapsed times, is defined

as follows: (l0, t0)(l1, t1) . . .

- The action sequence of r is the projection of the event sequence of r on the pairs {(l, t)|l ∈

Σ}

Definition 2.3. (timed word, timed language) Let Σ be an alphabet. A timed word over

Σ is an infinite sequence (σ, t) = (σ0, t0)(σ1, t1) . . ., where σi ∈ Σ, ti ∈ R+ and ti ≤ ti+1, for all

i = 0, 1,

A timed language over Σ is a subset of the set of all timed words over Σ.

Definition 2.4. (acceptance) Given a timed automaton T = (Q,Σ, E , I, R,X), a timed word

w over Σ is accepted by T iff there exists a run r of T , whose action sequence is v, such that

w = v. The set of timed words accepted by T is called the accepted language of T and is denoted

by L(T).

Barbuti et al. /A Notion of Non-Interference for Timed Automata 5

Note that we use the Büchi acceptance condition for the runs [2]. Moreover, we say that two

timed automata T1 and T2 are equivalent, we write T1 ≈ T2, if L(T1) = L(T2).

Automata with ǫ-edges are defined in the same way, but with a special action, the non-

observable action ǫ, belonging to Σ. Thus some transitions of the semantic automaton S(T)

can be labeled by ǫ, and they are called ǫ-transitions. When defining the accepted language for

an automaton with ǫ-edges, we must consider the action sequences as the the projection of the

event sequences on the pairs {(l, t) | l ∈ Σ− {ǫ}}.

The design of complex systems can be simplified by modeling subsystems with different

timed automata and considering, for the whole system, a suitable product of them. Now we

define a product operation which is a syntactic operation between timed automata.

Definition 2.5. (Product) Let T1 = (Q1,Σ1, E1, I1, R1,X1) and

T2 = (Q2,Σ2, E2, I2, R2,X2) be two timed automata with X1 ∩ X2 = ∅. The product of T1 and

T2, denoted by T1 ‖ T2, is the following timed automaton:

T1 ‖ T2 = 〈Q1 ×Q2,Σ1 ∪Σ2, E , I1 × I2, R1 ×R2,X1 ∪ X2〉

where E is defined by:

1. Synchronization actions

∀σ ∈ Σ1 ∩ Σ2,∀(q1, ψ1, γ1, σ, q
′
1) ∈ E1,∀(q2, ψ2, γ2, σ, q

′
2) ∈ E2

E contains ((q1, q2), ψ1 ∧ ψ2, γ1 ∪ γ2, σ, (q
′
1, q

′
2))

2. T1 actions

∀σ ∈ Σ1\Σ2,∀(q, ψ, γ, σ, q
′) ∈ E1,∀s ∈ Q2

E contains ((q, s), ψ, γ, σ, (q′ , s)

3. T2 actions

∀σ ∈ Σ2\Σ1,∀(q, ψ, γ, σ, q
′) ∈ E2,∀s ∈ Q1

E contains ((s, q), ψ, γ, σ, (s, q′))

Thus, the product automaton behavior is the interleaving of the components behaviors where

actions with the same name are executed synchronously.

Note that the product operation above is not the standard parallel composition on timed

automata with Büchi acceptance condition. In that case the resulting automaton is defined in

order to accept only the behaviors in which all the components have a run with respect to their

sets of repeated states (see [2]). For our purposes it is sufficient to define, as above, a product

that is simply the product between the timed transition tables (i.e. the automata without the

set of repeated states needed for the acceptance condition) of the involved automata, and to set

the set of repeated states of the resulting timed transition table to the cartesian product of the

repeated states of the components. This would not work correctly in the general case, but here

it is correct because we use the product only to restrict the acceptance of some timed words by

a given timed automaton.

6 Barbuti et al. /A Notion of Non-Interference for Timed Automata

3. Non-Interference for Timed Automata

Non-interference for concurrent non-real-time systems has been modeled in process algebras

using bisimulation equivalence (see, for example, [14, 7, 8, 13]): if the actions of a system P are

divided into high-level and low-level ones, the system respects the non-interference property if

its behavior in absence of high-level actions is equivalent to its behavior, observed on low-level

actions, when high-level actions occur. To compare the two behaviors we check equivalence of

two processes obtained from P : in the first one high-level actions are forbidden, in the second

one they are hidden. Different notions of bisimulation equivalence are used to model different

notions of non-interference. These have been reformulated in [9] in a real-time setting using a

timed process algebra with a discrete time domain.

In this paper we define a new notion of non-interference using timed automata, a well-known

formalism, with a dense time domain, for real-time systems modeling and verification. The

notion is based on high-level actions delays magnitude and on equivalence of timed automata.

Given a natural number n, we say that high-level actions do not interfere with the system, con-

sidering a minimum delay n, if the system behavior in absence of high-level actions is equivalent

to the system behavior, observed on low-level actions, when high-level actions can occur, but the

delay between any two of them is greater than or equal to n. Thus, if the environment of the

system does not offer high-level events separated by less than n time units and the property

holds, there is no way for low-level users to detect any high-level activity. The main improve-

ment with respect to the untimed notion of non-interference is that time is observable and the

property captures those systems in which the time delay between high-level actions cannot be

used to construct illegal information flows from high-level to low-level users.

Let T be a timed automaton over the alphabet Σ. We suppose that Σ is partitioned into

two disjoint sets of actions H and L: H is the set of high-level actions, while L is the set of

low-level ones.

To observe the behavior of an automaton T in absence of high-level actions, we can compose

T in parallel with an automaton, from now on called InhibH , that does not allow the execution

of high-level actions.

The automaton InhibH is shown in Figure 1. In figures we use some usual conventions: a

state with a dangling ingoing arc is an initial state, a state depicted with double circles belongs

to the set of repeated states and an arc having as label a set of action (as L or H for instance)

represents a set of edges, one for each action in the set (L or H), with the same clock constraint

and clock reset. In the product T ‖ InhibH , where all actions are synchronization actions, the

component T cannot have a transition labeled by σ ∈ H because his partner in synchronization,

InhibH , never performs high-level actions (its constraints on high level actions are false). Thus

only low-level actions are executed.

We have that L(T ‖ InhibH) contains all basic behaviors of T , i.e. all timed words obtained

by runs in which high-level actions do not occur.

Consider the automaton InterfnH in Figure 2. This automaton allows the execution of high-

level actions only when they are separated by at least n time units. To see this, consider its

Barbuti et al. /A Notion of Non-Interference for Timed Automata 7

true, L, {}

0

false, H, {}

Figure 1. InhibH

true, L, {} true, L, {}

i1 x_interf ≥ n,

 H, {x_interf}

true, H, {x_interf}
i0

Figure 2. The structure of InterfnH

behavior from the initial state i0. There, it can perform low-level actions without restrictions. If

never high-level actions occur in the run, then it stays forever in i0 cycling on low-level actions.

If a high-level action occurs the automaton changes its state to i1 and reset a clock called xinterf .

Note that this clock is reset by all high-level actions. This means that, in state i1, xinterf always

records the time elapsed from the previous high-level action occurred. In state i1 low-level

actions are allowed again with no restrictions, but any high-level action can be executed only if

at least n time units have elapsed from the previous one. This is expressed by the constraint

xinterf ≥ n.

Given an automaton T , the product of T with InterfnH , T ‖ InterfnH , allows to observe the

set of all behaviors of T such that high-level actions occur at times separated by an interval

whose length is greater than, or equal to n. Of course, we are assuming that T does not reset

the clock xinterf .

Before giving the definition of n-non-interference, we need the following operation, which, if

applied to an automaton T , returns an automaton having the same behaviors of T , but where

high-level actions are non-observable.

Definition 3.1. (hiding of high-level actions) Let T be a timed automaton over an alpha-

bet Σ = (H,L). We denote by T/H the automaton obtained by T by replacing each edge

(q, ψ, γ, σ, q′) of T with σ ∈ H, with the edge (q, ψ, γ, ǫ, q′).

Now we can define formally the intuitive notion of non-interference given above.

Definition 3.2. (n-non-interference) Let T be a timed automaton over an alphabet Σ =

(H,L), and let n ∈ IN . High-level actions do not interfere in T with a minimum delay n

8 Barbuti et al. /A Notion of Non-Interference for Timed Automata

(equivalently we say that T is n-non-interfering), if and only if

(T ‖ InterfnH)/H ≈ T ‖ InhibH (1)

3.1. Characterization with Timed Languages

In this section we characterize the notion of timed non-interference, defined in the previous

section, using timed languages. We define three operations on timed languages and then we relate

them to the corresponding operations on automata. This provides a more formal justification

of the definition of n-non-interference of the previous section. As a matter of fact, it was given

following some remarks on the behaviors of the automata InhibH and InterfnH when composed

with the automaton T representing the system. The proofs of the following propositions are

rather simple. We only give the proof of Proposition 3.2. The other ones are similar.

First, consider the restriction of a timed language to low-level actions.

Definition 3.3. (restriction to low-level actions) Let I be a set of timed words over an

alphabet Σ = (H,L) (i.e. a timed language). I|L is the subset of I such that all elements are

timed words on actions in L only:

I|L = {(σ, t) ∈ I | ∀(σi, ti) ∈ (σ, t). σi ∈ L}

Proposition 3.1. Let T be a timed automaton over an alphabet Σ = (H,L). Then L(T)|L =

L(T ‖ InhibH). ⊓⊔

The restriction to high level actions separated by at least n time units is defined as follows.

Definition 3.4. (n-delay restriction) Let I be a set of timed words over an alphabet Σ =

(H,L). Let n be a natural number. InH is the subset of I containing all timed words in I such

that the delay between any two actions in H is at least n:

InH = {(σ, t) ∈ I | ∀(σi, ti), (σj , tj) ∈ (σ, t). i 6= j ∧ σi, σj ∈ H ⇒ |ti − tj| ≥ n} (2)

Proposition 3.2. Let T = (Q,Σ = (H,L), E , I, R,X) be a timed automaton. Then L(T)nH =

L(T ‖ InterfnH).

Proof:

Let w be a timed word in L(T)nH . This means that w ∈ L(T) and it satisfies the condition

expressed in (2). Since w is accepted by T , there exists a run r = (q0, ν0)
l0−→(q1, ν1)

l1−→ . . .

whose action sequence equals w (actually, there exist infinitely many runs having this property;

we take just one of them). Let q be a state of T , belonging to R, which is entered infinitely

many times along r according to the Büchi acceptance condition.

We want to construct, from r, a run of T ‖ InterfnH whose action sequence equals w. There

are two cases. The first one is when a high level action is never executed along r. In this case

the run is just r′ = ((q0, i0), ν0 ∪ {xinterf = 0})
l0−→((q1, i0), ν

∗
1)

l1−→ . . . ((qi, i0), ν
∗
i)

li−→ . . . where

Barbuti et al. /A Notion of Non-Interference for Timed Automata 9

ν∗i are the clock valuations νi of r extended with the valuation for the clock xinterf of Interf
n
H .

Along r (and also r′) this clock is never reset and InterfnH stays forever in state i0 which is a

repeated state. Thus, along the run so constructed, the state (q, i0) is taken infinitely many

times satisfying the acceptance condition; moreover r′ has the same event sequence of r and

thus the corresponding accepted timed word is w.

The second case is when at least one high-level action h is executed along r. Suppose this hap-

pens at step k. Consider the prefix of a run r′ = ((q0, i0), ν0 ∪ {xinterf = 0})
l0−→((q1, i0), ν

∗
1)

l1−→

· · · ((qk, i0), ν
∗
k)

lk=h
−→((qk+1, i1), νk+1 ∪ {xinterf = 0}) where ν∗i are again the extensions of νi of

r to handle the clock xinterf . If all actions following lk in r are low-level, we can extend r′ as

in the first case and we have that the state (q, i1) occurs infinitely many times in r′, and so

r′ is a run of T ‖ InterfnH . If, on the other hand, other high-level actions occur in r, i.e. r =

· · · (qk+1, νk+1)
lk+1
−→· · · (qj , νj)

lj
−→(qj+1, νj+1) · · ·, with lj ∈ H and for each li, k < i < j, li ∈ L ∪

R+, we can extend r′ as follows: r′ = · · · ((qk+1, i1), ν
∗
k+1

)
lk+1
−→· · · ((qj , i1), ν

∗
j)

lj
−→(qj+1, ν

∗
j+1) · · ·

Since r satisfies the condition of (2), then at least n time units have elapsed between the oc-

currence of lk and that of lj. Now, since ν∗k+1
= νk+1 ∪ {xinterf = 0} and xinterf is not reset by

low-level actions, then the value held by xinterf in ν∗j is greater than, or equal to, n, and this

means that r′ is a prefix of a run of T ‖ InterfnH . Since ν∗j+1 = νj+1 ∪ {xinterf = 0}, the same

argumentation can be used to show that the next high-level action of r (if any) can be executed

in r′, and so on. Thus, w ∈ L(T ‖ InterfnH). The converse can be easily proven by a similar

argument. ⊓⊔

The hiding of high-level actions is expressed as follows.

Definition 3.5. (hiding of high-level actions) Let I be a set of timed words over an alpha-

bet Σ = (H,L). I/H contains the timed words (σ, t) of I in which the pairs (σi, ti) with σi ∈ H

are discarded:

I/H =

ω′ ω = (σ, t) ∈ I and ω′ is the projection of ω

on the pairs {(σ, t)|σ ∈ L} }

Proposition 3.3. Let T be a timed automaton over an alphabet Σ = (H,L). Then L(T)/H =

L(T/H). ⊓⊔

The following proposition states that the above characterization correctly expresses n-non-

interference.

Theorem 3.1. Let T be a timed automaton over an alphabet Σ = (H,L), and n ∈ IN .

T is n-non-interfering iff L(T)nH/H = L(T)|L

Proof:

Follows from Definition 3.2 and the three propositions above. ⊓⊔

10 Barbuti et al. /A Notion of Non-Interference for Timed Automata

s1 s0 s2

s3 x1 < 1,
cloche,

x0 > 2,

reset, {x0}

cloche,
x1 < 1,

x1 = 1, , {}ε

x0 = 1, cloche, {x1}x0 = 2, begin_ctrl, {}

{}
ε,

x0 = 4, end_ctrl, {x0}
x0 <= 2,

{x1}

{x1}

Figure 3. Automaton T : a simplified airplane control

4. An example

In this section we consider a simple control T of an airplane (Figure 3) and study its non-

interference properties. The system periodically executes, at predefined instants, a set of op-

erations to control flight stability. The control operations begin with action begin ctrl and end

with action end ctrl. State s1 is an abstraction for the control operations, which require 2 time

units to be completed. One time unit before entering each control cycle the system can catch

an input action from the pilot; in this simple case we consider only a single input action cloche

modeling cloche movements. When cloche occurs, the system handles it and then continues to

manage control actions. Let begin ctrl and end ctrl be low-level actions and cloche and reset be

the high-level actions.

At first consider the behavior of T when the high-level action cloche is disabled (i.e. the

moves of T ‖ InhibH); this consists in a simple cycle between states s0 and s1 where transitions

are separated by exactly 2 time units.

Thus L(T ‖ InhibH) contains a single timed word

(begin ctrl, 2)(end ctrl, 4) · · · (begin ctrl, 2 + 4i)(end ctrl, 4(i+ 1)) · · · (3)

Consider now the general behavior of the system, i.e. all actions are enabled with no re-

strictions. When cloche occurs, the system moves to state s2. When the system is in s2 it

is handling the cloche action. This operation normally requires one time unit, after which the

system returns to the initial state. However, while being in s2, the system can catch other cloche

actions and in this case it moves to state s3. If the handling of them requires too much time

(x0 becomes greater than 2), it is necessary to postpone the beginning of the successive control

cycle (i.e. action reset is executed).

Thus, the cloche actions can interfere with the basic system behavior if they are too close to

each other. To see this formally with our approach to non-interference consider a natural number

Barbuti et al. /A Notion of Non-Interference for Timed Automata 11

n and the automaton T ‖ InterfnH . If n = 0 high-level actions can occur without restrictions

on their relative delays and consequently the reset action could be executed. Thus, the system

does not satisfy our non-interference definition. If, instead, n ≥ 1, then only one cloche action

can occur between two successive control cycles and it is managed without affecting the basic

behavior. Thus, for each n ≥ 1, (T ‖ InterfnH)/H generates the single timed word (3) which in

turn is the unique timed word generated by T ‖ InhibH . From Definition 3.2 we conclude that

high-level actions do not interfere in T with a minimum delay n ≥ 1 (T is n-non-interfering for

n ≥ 1). On the other hand, if n = 0 there is interference.

5. Discussion

In order that the theory we have developed can become useful in practice, we must check

the equivalence of timed automata. This implies checking inclusion in both directions of the

respective recognized languages. It is well known that for general timed automata the language

inclusion problem is undecidable (see [2]). However, the language inclusion problem can be

solved if the system can be modeled using deterministic automata [2] or event-clock automata

[4]. To make the method effective also in the general case, we are following two directions. On

one side we are studying weaker notions of non-interference which are checkable on general timed

automata. On the other side, we are investigating sufficient conditions on the structure of the

automaton T representing the system, which allow us to decide the equivalence check required

by our timed non-interference definition. This direction is promising since the automata that

have to be compared have a very similar structure, derived from the initial automaton T .

References

[1] Aceto, L., Burgueño, A. and Guldstrand Larsen, K. Model Checking via Reachability

Testing for Timed Automata. TACAS 98, Springer LNCS, 1384, 263–280, 1998.

[2] Alur, R. and Dill, D.L. A Theory of Timed Automata. Theoretical Computer Science, 126,

183–235, 1994.

[3] Alur, R., Courcoubetis, C. and Dill, D.L. Model-Checking in Dense Real-time. Information

and Computation, 104, 2–34, 1993.

[4] Alur, R., Fix, L. and Henzinger, T.A. Event-Clock Automata: A Determinizable Class of

Timed Automata. Theoretical Computer Science, 204, 1997.

[5] Focardi, R. and Gorrieri, R. A Classification of Security Properties for Process Algebras.

Journal of Computer Security, 3(1): 5–33, 1995.

[6] Focardi, R., Ghelli, A. and Gorrieri, R. Using Non Interference for the Analysis of Security

Protocols. In Proceedings of DIMACS Workshop on Design and Formal Verification of

Security Protocols (H. Orman and C. Meadows Eds.) September 3-5, 1997, DIMACS Center,

CoRE Building, Rutgers University.

12 Barbuti et al. /A Notion of Non-Interference for Timed Automata

[7] Focardi, R. and Gorrieri, R. Automatic Compositional Verification of Some Security Prop-

erties. In Proceedings of Second International Workshop on Tools and Algorithms for

Construction and Analysis of Systems (TACAS’96). Springer LNCS, 1055, 167–186, 1996.

[8] Focardi, R. and Gorrieri, R. The Compositional Security Checker: A Tool for the Verifica-

tion of Information Flow Security Properties. IEEE Transactions on Software Engineering,

23(9): 550–571, 1997.

[9] Focardi, R., Gorrieri, R. and Martinelli, F. Information Flow in a Discrete-Time Process Al-

gebra In Proceedings of 13th IEEE Computer Security Foundations Workshop (CSFW’00),

(P. Syverson ed.), IEEE press, Cambridge, England, July 2000.

[10] Goguen, J.A. and Meseguer, J. Security Policy and Security Models. In Proceedings of

the 1982 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 11–20,

1982.

[11] Henzinger, T.A., Nicollin, X., Sifakis, J. and Yovine, S. Symbolic Model Checking for

Real-Time Systems. Information and Computation, 111, 193–244, 1994.

[12] McLean, J. A General Theory of Composition for Trace Sets Closed Under Selective Inter-

leaving Functions. In Proceedings of 1994 IEEE Symposium on Research in Security and

Privacy, IEEE Press, 1994.

[13] Ryan, P. Y. A. and Schneider, S. A. Process Algebra and Non-Interference. Journal of

Computer Security, 9(12), 75–103, 2001.

[14] Roscoe, A.W., Woodcock, J.C.P. and Wulf, L. Non-Interference Through Determinism.

Journal of Computer Security, 4(1), 1996.

[15] Sabelfeld, A. and Sands, D. Probabilistic Noninterference for Multi-threaded Programs.

In Proceedings of the 13th IEEE Computer Security Foundations Workshop, Cambridge,

England, July 2000. IEEE Computer Society Press, 2000.

[16] Yovine, S. Model Checking Timed Automata. Lectures on Embedded Systems, Springer

LNCS, 1494, 114–152, 1996.

