
Fundamenta Informaticae 1

IOS Press

Timed Automata with non-Instantaneous Actions

Roberto Barbuti

Dipartimento di Informatica, Università di Pisa

Corso Italia, 40 - 56125 Pisa - Italy

email: barbuti@di.unipi.it

Nicoletta De Francesco

Dipartimento di Ingegneria dell’Informazione, Università di Pisa

Via Diotisalvi, 2 - 56126 Pisa - Italy

email: nicoletta.defrancesco@iet.unipi.it

Luca Tesei

Dipartimento di Informatica, Università di Pisa

Corso Italia, 40 - 56125 Pisa - Italy

email: tesei@di.unipi.it

Abstract. In this paper we propose a model, timed automata with non-instantaneous ac-

tions, which allows representing in a suitable way real-time systems. Timed automata with

non-instantaneous actions extend the timed automata model by dropping the assumption

that actions are instantaneous, that is an action can take some time to be completed. Thus,

for an action σ, there are two particular time instants, the initiation of the action and the

completion of the action, which may occur at different times. We investigate the expressive-

ness of the new model, comparing it with classical timed automata. In particular, we study

the set of timed languages which can be accepted by timed automata with non-instantaneous

actions. We prove that timed automata with non-instantaneous actions are more expressive

than timed automata and less expressive than timed automata with ǫ edges. Moreover we

define the parallel composition of timed automata with non-instantaneous actions. We show

how real systems can be suitably modeled by them, in particular we specify a system which

was specified in [7] by timed automata. We point out how the specification by means of a

parallel timed automata with non-instantaneous actions is, in some cases, more convenient

to represent reality.

Keywords: real-time systems, timed automata, timed languages.

2 Barbuti et al. /Timed automata with non-instantaneous actions

1. Introduction

Transition systems have been intensively used as a model for specifying and verifying “real-life

systems”. The representation of a system by means of a finite transition system allows reasoning

easily about qualitative properties of it, such as “safety” and “liveness”.

When real-time systems are considered, also quantitative timing properties must be taken

into account, since the correctness of the whole system may depend on the magnitude of different

delays. For these systems, the specification by means of classical transition systems is no longer

satisfactory because time requirements cannot be described within this model. A natural way

to solve this problem is to add, to the usual model, a suitable notion of time. Examples of this

extension can be found in [11, 15].

Alur and Dill proposed the model of timed automata [6, 7]. Since their introduction, timed

automata have been widely studied from different points of view [4, 5, 8, 9], in particular for

their possible use in the verification of real-time systems [1, 2, 3, 10, 14, 16, 19]. Timed automata

can be represented by finite graphs augmented with a finite set of (real-valued) clocks. An edge

is labeled by a symbol which represents the action performed when the edge is taken. While

actions are instantaneous, time can elapse in states. An edge can reset to zero the value of a

set of clocks, and, at any instant, the value of a clock is equal to the time elapsed since the last

reset on it. Any edge can be equipped with a constraint on the value of clocks. An edge may

be taken only if the current value of clocks satisfies its constraint.

In this paper we propose a model, timed automata with non-instantaneous actions, which

allows representing in a suitable way real-time systems. Essentially, timed automata with non-

instantaneous actions extend the timed automata model by dropping the assumption that actions

are instantaneous, that is an action can take some time to be completed. To model this feature,

every edge is equipped with two constraints, a initiation constraint and a completion constraint.

An edge can be taken when its initiation constraint is satisfied by the current value of clocks,

and it can be completed only when its completion constraint is satisfied. Analogously, every

edge is associated with a set of clocks which are reset to zero when it is taken (initiation reset)

and a set of clocks which are reset to zero when the action is completed (completion reset).

Thus, for an action σ, there are two particular time instants, the initiation of the action and

the completion of the action, which may occur at different times. Following the notation of [17]

we use the notation σ↑ and σ↓ for these two events.

After the definition, we investigate the expressiveness of the new model, comparing it with

classical timed automata. In particular, we study the set of timed languages which can be

accepted by timed automata with non-instantaneous actions. A timed language is a set of timed

words. A timed word over an alphabet Σ, is an infinite sequence (σ, t) = (σ0, t0)(σ1, t1) . . .,

where σi ∈ Σ and t0t1t2 . . . is an infinite sequence of non-decreasing time values associated to

the symbols σ0σ1σ2 A timed word (σ, t) is accepted by a timed automaton if there exists a

path in the automaton, labeled by σ0σ1σ2 . . ., such that any edge labeled by σi is taken at time

ti, and satisfying some acceptance condition.

When dealing with non-instantaneous actions, the previous definition must be modified. In

Barbuti et al. /Timed automata with non-instantaneous actions 3

fact there is no longer the time in which an edge is instantaneously traversed, but the time of its

initiation and of its completion. For this reason we define the notions of initiation acceptance

and completion acceptance. In the first notion a symbol σ is considered as occurring at the

time of its initiation while in the second one it is considered as occurring at the time of its

completion. We prove that the class of initiation accepted languages and the one of completion

accepted languages are different and both strictly include the class of languages accepted by

timed automata. Initiation and completion acceptance are both included in the notion of selected

acceptance, in which the symbols of the alphabet are partitioned into two subset: the subset

of symbols the occurrence of which is considered at initiation time, and the subset of the ones

the occurrence of which is considered at completion time. We show that the class of selected

accepted languages strictly includes the previous two classes and it is strictly included in the

class of languages accepted by timed automata with non-observable actions.

Afterwards, we define the parallel composition of timed automata with non-instantaneous

actions, and we show how they are a formalism to conveniently represent reality, when paral-

lel non-instantaneous actions are involved. We show how a classical example of use of timed

automata as a specification language [7] can be more suitably modeled by a parallel timed

automaton with non-instantaneous actions.

2. Timed automata with non-instantaneous actions

Starting from the notion of timed automata we introduce, in this section, a new class of au-

tomata. In the following R+ is the set of non-negative real numbers. A clock takes values from

R+. Given a set X of clocks, a clock valuation over X is a function assigning a non-negative real

number to every clock. The set of valuations of X , denoted VX , is the set of total function from

X to R+. Given ν ∈ VX and δ ∈ R+, with ν + δ we denote the valuation that maps each clock

x ∈ X into ν(x)+δ. Given a set X of clocks, a reset γ is a subset of X . The set of all resets of X is

denoted by ΓX . Given a valuation ν ∈ VX and a reset γ, we define that the valuation ν\γ(x) = 0

if x ∈ γ and ν\γ(x) = ν(x) if x 6∈ γ. Given a set X of clocks, the set ΨX of clock constraints over

X are defined by the following grammar: ψ ::= true | false | ψ∧ψ | ψ∨ψ | ¬ψ | x#t | x− y#t,

where x, y ∈ X , t ∈ R+, and # is a binary operator in {<,>,≤,≥,=}. Clock constraints are

evaluated over clock valuations. The satisfaction by a valuation ν ∈ VX of the clock constraint

ψ ∈ ΨX is denoted by ν |= ψ.

Definition 2.1. (Timed Automaton) A timed automaton T is a tuple (Q,Σ, E , I, R,X),

where: Q is a finite set of states, Σ is a finite alphabet of actions, E is a finite set of edges,

I ⊆ Q is the set of initial states, R ⊆ Q is the set of repeated states, X is a finite set of clocks.

Each edge e ∈ E is a tuple in Q × ΨX × ΓX × Σ × Q. The timed language accepted by T is

denoted by L(T), T denotes the class of all timed automata and L(T) denotes the set of timed

languages acceptable by automata in T .

Definition 2.2. (Timed Automaton with non-Instantaneous Actions) A timed automa-

ton with non-instantaneous actions N is a tuple (Q,Σ, E , B,R,X), where: Q is a finite set of

4 Barbuti et al. /Timed automata with non-instantaneous actions

states, Σ is a finite alphabet of actions, E is a finite set of edges, B ⊆ Q is the set of initial

states, R ⊆ Q is the set of repeated states, X is a finite set of clocks. Each edge e ∈ E is a tuple

in Q×ΨX × ΓX ×Σ×ΨX × ΓX ×Q. If e = (q, ψi, γi, σ, ψc, γc, q′) is an edge, q is the source, q′

is the target, ψi and ψc are the initiation constraint and the completion constraint, respectively,

σ is the label, γi and γc are the initiation reset and the completion reset, respectively. The class

of all timed automata with non-instantaneous actions will be denoted by N .

The semantics of a timed automaton with non-instantaneous actions, N = (Q,Σ, E , B,R,X), is

an infinite transition system S(N) whose states are of two kinds:

• a pair (q, ν), where q ∈ Q is a state of N and ν ∈ VX is a valuation;
• a pair (

−→
σ (ψ,γ,q), ν) where σ ∈ Σ, ψ ∈ ΨX , γ ∈ ΓX , q ∈ Q and ν ∈ VX . These states

represent the execution of action σ after its initiation.

The rules to derive the transitions of S(N) are the following:

N1.
δ ∈ R+

(q, ν)
δ

−→(q, ν + δ)
N2.

(q, ψi, γi, σ, ψc, γc, q′) ∈ E , ν |= ψi

(q, ν)
σ↑
−→(

−→
σ (ψc,γc,q′), ν\γ

i)

N3.
δ ∈ R+

(
−→
σ (ψ,γ,q), ν)

δ
−→(

−→
σ (ψ,γ,q), ν + δ)

N4.
ν |= ψ

(
−→
σ (ψ,γ,q), ν)

σ↓
−→(q, ν\γ)

Rule N1. represents the case in which the automaton stays idle. If N moves along an outgoing

edge e = (q, ψi, γi, σ, ψc, γc, q′), this corresponds to a transition of S(N) from the state (q, ν)

to the state (
−→
σ (ψc,γc,q′), ν\γ

i) in which σ is initiated (Rule N2.). Note that this state records

the completion constraint and the completion reset of e, to be considered for the completion of

σ. In this state, some time can elapse: in this case S(N) reaches a state where σ continues to

be executed, but the valuation of clocks is modified according to the elapsed time (Rule N3.).

When the execution of σ terminates, N reaches a new state (the target of e) with a new valuation

of the clocks, given by the completion reset of e (Rule N4.).

As for timed automata, the language accepted by a timed automaton with non-instantaneous

actions N = (Q,Σ, E , B,R,X) is a timed language over Σ. The difference is that we can choose,

for each action σ ∈ Σ, if we want to consider the time of its initiation or the time of its completion.

If, for some action σ, we choose to consider its initiation, σ is considered as occurring when σ↑

occurs, and σ ↓ is ignored, while, if we choose to consider its completion, σ is considered as

occurring when σ↓ occurs, and σ↑ is ignored.

Given A ⊆ Σ, let us denote by A↑= {σ↑ |σ ∈ A} and A↓= {σ↓ |σ ∈ A} the set of initiations

and completions of the actions in A, respectively.

Definition 2.3. (Run, Selected Sequence, Initiation Sequence, Completion Sequence)

Given a timed automaton with non-instantaneous actions N = (Q,Σ, E , B,R,X), a run of

the automaton is an infinite sequence of states and transitions of S(N) s0
l0−→ s1

l1−→ . . . such

that s0 = (q, ν), q ∈ I and ν(x) = 0 for every x ∈ X , and a state q ∈ R exists such that q

occurs infinitely often in the pairs of the sequence {si}. Note that we use the Büchi acceptance

condition for the runs [7].

Barbuti et al. /Timed automata with non-instantaneous actions 5

• The time sequence t0t1t2 . . . of the time elapsed from state s0 to state sj in r is defined as

follows: t0 = 0 and ti+1 = ti +

0 if li ∈ Σ

li otherwise

• The event sequence of the events occurring during r, including the elapsed times, is defined

as follows: (l0, t0)(l1, t1) . . .

• The action sequence of r is the projection of the event sequence of r on the pairs {(l, t)|l ∈

Σ}

Given a partition Σ = (I, C), I ∪ C = Σ and I ∩C = ∅:

• The (I, C) selected action sequence of r is the projection of the event sequence of r on the

pairs {(l, t)|l ∈ I ↑ ∪ C ↓}.

• The initiation sequence of the initiations of the actions in r is the (Σ, ∅) selected action

sequence of r, i.e. the projection of the event sequence of r on the pairs {(l, t)|l ∈ Σ↑}.

• The completion sequence of the completions of the actions in r is the (∅,Σ) selected action

sequence of r, i.e. the projection of the event sequence of r on the pairs {(l, t)|l ∈ Σ↓}.

Definition 2.4. (Selected Acceptance, Initiation Acceptance, Completion Acceptance)

Let N = (Q,Σ, E , B,R,X) be a timed automaton with non-instantaneous actions, and (I, C) a

partition of Σ.

• A timed word w over Σ is (I, C) selected accepted by N if a run r of N exists such that,

for all σ ∈ I, σ′ ∈ C, w = v[σ/σ ↑, σ′/σ′ ↓], where v is the (I, C) selected sequence of r

and v[σ/σ ↑] denotes the sequence v in which every symbol σ ↑∈ I ↑ is substituted by σ

(analogously for v[σ/σ↓]). The set of timed words (I, C) selected accepted by N is called

the (I, C) selected accepted language of N and is denoted by Ls(I,C)(N).

• A timed word w over Σ is initiation accepted by N iff it is (Σ, ∅) selected accepted by N.

We shall use Li(N) for Ls(Σ,∅)(N), to denote the initiation accepted language of N .

• A timed word w over Σ is completion accepted by N iff it is (∅,Σ) selected accepted by N.

We shall use Lc(N) for Ls(∅,Σ)(N), to denote the completion accepted language of N .

The class of timed languages selected (for any (I, C)), initiation and completion accepted by

automata in N is denoted by Ls(N), Li(N), Lc(N), respectively.

3. Expressive power of the model

We now prove that the power of timed automata with non-instantaneous actions is greater than

that of timed automata (without ǫ edges).

Example 3.1. Consider the automaton N1 in Figure 1a. The initiation accepted language L1

is the set of all timed words (σ, t) = (σ0, t0)(σ1, t1)(σ2, t2) · · ·, such that each ti ∈ (i, i + 1], for

all natural numbers i, and either σi = a and ti = i+ 1, or σi = b and ti ∈ (i, i+ 1).

6 Barbuti et al. /Timed automata with non-instantaneous actions

x=1, {x}, a, true, {} 0<x<1, {}, b, x=1, {x}

q0 q0 q1
true, {x}, c, x>0, {y}

true, {}, c, x<1 0<y, {y}

(a) (b)

Figure 1. Automata N1 and N2

Example 3.2. Consider the automaton N2 in Figure 1b. The completion accepted language

L2 is the set of all timed words (σ, t) = (c, t0)(c, t1)(c, t2) · · ·, such that ti < ti+1, and there exists

γ > 0 such that 0 < ti < t0 + 1− γ, for all i.

Theorem 3.1. 1. L(T) ⊂ Li(N), 2. L(T) ⊂ Lc(N)

Proof:

To show that L(T) ⊆ Li(N) and L(T) ⊆ Lc(N), we give a construction that, given a timed

automaton T , builds a timed automaton with non-instantaneous actions N such that L(T) =

Li(N) = Lc(N). Given T = (Q,Σ, E , I, R,X), the corresponding timed automaton with non-

instantaneous actions is the automaton N = (Q,Σ, E ′, I, R,X ′), where X ′ = X ∪ {xe | e ∈ E}

and for each e = (q, ψ, γ, σ, q′) ∈ E , E ′ contains (q, ψ, γ ∪ {xe}, σ, xe = 0, ∅, q′). We assume that

X ∩ {xe | e ∈ E} = ∅.

All actions of N are forced to be instantaneous. This is done by resetting the dedicated clock

xe at the initiation of the transition e and requiring that xe = 0 at the termination of e. So N

acts as T in all runs, and hence L(T) = Li(N) = Lc(N) no matter the given selection for N .

To show that the class L(T) is a strict subset of Li(N) (Lc(N)), consider the timed automa-

ton with non-instantaneous actions N1 (N2) in Figure 1a (1b). The language initiation accepted

by this automaton, L1 (L2), is equal to the one accepted by the timed automaton with ǫ edges

shown in Figure 2a (2b). This language cannot be accepted by any timed automaton without ǫ

edges [12]. ⊓⊔

q0

x=1, ,{x} εx=1, a, {x}

0<x<1, b, {}

q1 q0
true, , {x}

x<1 0<y, c, {y}

0<x, c, {y}
q1

ε
q2

(a) (b)

Figure 2. A timed automaton for L1 and a timed automaton for L2

Proposition 3.1. 1. Li(N) 6⊆ Lc(N), 2. Lc(N) 6⊆ Li(N).

Proof:

The proof is based on the fact that the language L1 (L2), initiation (completion) accepted by

the automaton N1 (N2), cannot be completion (initiation) accepted by any timed automaton

with non-instantaneous actions. ⊓⊔

Barbuti et al. /Timed automata with non-instantaneous actions 7

Proposition 3.2. Li(N) ∪ Lc(N) ⊂ Ls(N).

Proof:

The proof is based on the fact that the language L1∪L2, ({a, b}, {c}) accepted by the automaton

N3 in Figure 3a, can be neither initiation nor completion accepted by any timed automaton with

non-instantaneous actions. ⊓⊔

q0 q1

true, {x}, c, x>0, {y}

0<x<1, {}, b, x=1, {x}

x=1, {x}, a, true, {}x=1, {x}, a, true, {}

0<x<1, {}, b, x=1, {x}

q2

true, {}, c, x<1 0<y, {y}

q0

x=0, a, {x} x=2, ,{x}ε

(a) (b)

Figure 3. Automaton N3 and an automaton for Leven

We now prove that timed automata with non-instantaneous actions are less expressive than

timed automata in which ǫ (non-observables) transitions are used. The latter class will be

denoted by Tǫ [12]. Let us start defining a transformation for a single automaton with non-

instantaneous actions N .

Definition 3.1. (Simulator Automaton) Let N = (Q,Σ, E , B,R,X) be a timed automaton

with non-istantaneous actions. The simulator automaton of N is a timed automaton TN defined

as follows: TN = (Q′,Σ ↑ ∪Σ ↓, E ′, B,R,X) where Q′ = Q ∪ {qe| e ∈ E} and for all e =

(q, ψi, γi, σ, ψc, γc, q′) ∈ E , E ′ contains (q, ψi, γi, σ↑, qe) and (qe, ψ
c, γc, σ↓, q′).

The simulator automaton TN simulates all runs of N retaining both initiation symbol and ter-

mination symbol for each action. Its actions are instantaneous and represent initiating instants

and terminating instants of non-instantaneous actions of N .

Definition 3.2. (Relabeled Simulator Automaton) Let N = (Q,Σ, E , B,R,X) be a timed

automaton with non-instantaneous actions and TN its simulator automaton. Let (I, C) a par-

tition of Σ.

Consider the renaming function g(I,C) : Σ↑ ∪Σ↓−→ Σ ∪ {ǫ} such that

g(I,C)(σ↑) =

{

σ if σ ∈ I

ǫ if σ ∈ C
g(I,C)(σ↓) =

{

ǫ if σ ∈ I

σ if σ ∈ C

The relabeled simulator automaton of N , denoted by TN(I,C), is the simulator automaton TN

where for all e ∈ E ′ the transition label l of e is renamed by g(I,C)(l).

Note that the relabeled simulator automaton of N has an alphabet Σ ∪ {ǫ} and belongs to Tǫ.

8 Barbuti et al. /Timed automata with non-instantaneous actions

Theorem 3.2. Ls(N) ⊂ L(Tǫ).

Proof:

First we show that Ls(N) ⊆ L(Tǫ). Consider a timed automaton with non-instantaneous actions

N = (Q,Σ, E , I, R,X), and a partition (I, C) of Σ. Let TN be the simulator automaton of N and

TN(I,C) be the relabeled simulator automaton of N . It can be shown that Ls(I,C)(N) = L(TN(I,C))

obtaining that any timed automaton with non-instantaneous actions can be simulated by an

automaton in Tǫ.

To show that the class Ls(N) is a strict subset of L(Tǫ) (and then also Li(N) and Lc(N) are

so), for proposition 3.2 consider the timed automaton in Tǫ shown in Figure 3b. The language

accepted by this automaton, Leven, is the set of all timed words (σ, t) = (a, t0)(a, t1)(a, t2) · · ·,

such that each ti is an even natural number and ti ≤ ti+1, for all i.

This language cannot be selected accepted by any automaton in N . ⊓⊔

As a consequence, our model can be put at an intermediate level between timed automata

and timed automata with ǫ edges.

Automata with periodic clock constraints, defined in [13], also have an expressive power

between timed automata and timed automata with ǫ edges. They contain constraints which are

based on regularly repeated time intervals. However, their power is not comparable with the

power of our model. In fact the aim of automata with periodic clock constraints is that of model

periodic behaviors, while we model actions that have a duration.✬

✫

✩

✪

✬

✫

✩

✪

✬

✫

✩

✪

✬
✫

✩
✪

✬
✫

✩
✪

★
✧
✥
✦

L(Tǫ)
L(T p)

Ls(N) Li(N) Lc(N)L(T)

Figure 4. Inclusion among language classes

With automata with periodic clock constraints it is possible to model the timed automaton

(with ǫ edges) of Figure 3b for Leven, which we are not able to model. On the other side,

automata N1, N2 and N3 cannot be modeled with periodic clock constraints.

The inclusion among language classes is given in Figure 4, where L(T p) is the class of

languages accepted by timed automata with periodic clock constraints.

We can apply to timed automata with non-instantaneous actions the verification techniques,

based on model checking, usually applied to timed automata [3, 10, 16, 19]. To perform this task,

we first specify the time of occurrence of every action and then translate the timed automaton

with non-instantaneous actions into a timed automaton with ǫ edges, as shown in the proof of

Theorem 3.2.

Barbuti et al. /Timed automata with non-instantaneous actions 9

4. Parallel Composition

In this section we define the semantic of a parallel composition of timed automata with non-

instantaneous actions.

Let N1 = (Q1,Σ1, E1, B1, R1,X1) and N2 = (Q2,Σ2, E2, B2, R2,X2) be two timed automata

with non-instantaneous actions such that X1 ∩ X2 = ∅. The parallel composition of N1 and N2

is denoted by (N1 ‖ N2).

The semantic is a transition system S(N1 ‖ N2) whose states are pairs 〈C1, C2〉 in which C1
is a state of the transition system S(N1) defining the semantic of N1 and C2 is a state of the

transition system S(N2). An initial configuration is 〈C0
1 , C

0
2〉 in which the components are initial

states of S(N1) and S(N2) respectively.

To save notation let us define a function Fsync : Σ1 ∪ Σ2 → {{1, 2}, {1}, {2}} such that

Fsync(σ) = {k ∈ {1, 2} | σ ∈ Σk}. This function returns a non-singleton if applied to a syn-

chronization action, otherwise it returns a singleton containing the index of the automaton the

argument belongs to.

The system evolves starting from an initial configuration using the following rules.

PN1.
δ ∈ R+

〈(s1, ν1), (s2, ν2)〉
δ

−→〈(s1, ν1 + δ), (s2, ν2 + δ)〉

PN2.
Fsync(σ) = J, ∀j ∈ J. (Cj = (qj, νj), (qj , ψ

i
j , γ

i
j , σ, ψ

c
j , γ

c
j , q

′
j) ∈ Ej , νj |= ψij)

〈C1, C2〉
σ↑
−→〈C′

1, C
′
2〉

where for all j ∈ {1, 2}, C′
j =

{

Cj if j 6∈ J

(
−→
σ (ψc

j
,γc

j
,q′

j
), νj\γ

i
j) if j ∈ J

PN3.
Fsync(σ) = J, ∀j ∈ J. (Cj = (

−→
σ (ψc

j
,γc

j
,qj), νj), νj |= ψcj)

〈C1, C2〉
σ↓
−→〈C′

1, C
′
2〉

where for all j ∈ {1, 2}, C′
j =

{

Cj if j 6∈ J

(qj , νj\γ
c
j) if j ∈ J

Rule PN1 represents the case in which both the two automata stay idle while the time

passes. Rule PN2 describes the situation in which a set of automata initiate, at the same time,

an action σ. This set is {1, 2} if σ is a synchronization action. If Fsync(σ) is a singleton, only

one automaton proceeds according to its own behavior. Rule PN3 describes the case in which a

set of automata in parallel complete an action σ. Note that synchronization non-instantaneous

actions must be initiated and terminated in the same instants by the two automata.

Let us remark that the notions of run and acceptance are analogous to the ones for timed

automata with non-instantaneous transitions, the only difference being that at least a repeated

state for each automaton must be infinitely repeated in a run according to the Büchi acceptance

condition.

The definition above can be extended to the case of n automata simply adding components to

the states of the transition system and extending the function Fsync to handle common symbols

10 Barbuti et al. /Timed automata with non-instantaneous actions

of n automata. That is the function applied to a symbol returns the set of all indexes of automata

that must synchronize on the symbol.

5. An example of specification

We consider the example of an automatic controller which opens and closes a gate at a railroad

crossing. This example was originally presented in [18], and it was used in [7] to show the

specification and verification capabilities of timed automata. For simplicity we assume that one

unit of time corresponds to a minute.

s1

(a) (b) (c)

s0

true, {w}, exit,

w = 0, {}

s2

x < 8 and

true, {x}, approach, x = 0, {}

crossing, w > 1, {}
x > 4, {w},

s2

s0

s3

y <1, {z},

1 < z < 2, {}

up,

true, {y}, lower, y = 0, {}

true, {y}, raise, y = 0, {}

s1

y < 1, {z},

1 < z < 2, {}

down,

s0

s3

u = 1, {},
raise,

u = 1, {}

true, {u}, approach, u = 0, {}
s1

s2

u = 1, {},

lower,
u = 1, {}

true, {u}, exit, u = 0, {}

Figure 5. Train, Gate and Controller

The automaton modeling the train is shown in Figure 5a. The automaton starts in state

s0. When approaching the railroad crossing, the train sends a (instantaneous) signal, approach,

to the controller. Note that the signal approach belongs to both the alphabet of the train and

of the controller, thus the two automata must synchronize on it. The train sends the signal

approach at least four minutes before it enters the crossing. The train takes at least one minute

to pass through the railroad crossing (action crossing). Note that, because this action is non-

instantaneous, in [7] it was modeled by two actions, in and out, simulating the initiation and

completion of it. After the signal approach is sent to the controller, the signal exit is sent within

8 minutes.

The gate is modeled by the automaton in Figure 5b. The synchronization with the controller

is ensured by the instantaneous signals lower and raise. When the gate receives the signal lower,

it starts to close the gate within one minute, and the closing action takes between one and two

minutes. The gate responds to the signal raise by opening the gate with the same delays.

Finally, Figure 5c shows the controller. When the controller receives the signal approach

from the train, it sends, exactly after one minute, the signal for closing the gate. With the same

delay it sends the signal raise after receiving the signal exit. Note that all the signals are forced

to be instantaneous by asking for the value of the clocks to be the same at their initiation and

completion.

The whole system is obtained by the parallel composition of the three automata.

We would like to remark that our specification allows us to state properties which better

Barbuti et al. /Timed automata with non-instantaneous actions 11

describe real constraints than timed automata. As an example, let us quote a property which

was checked on the train/gate system in [7]. Such a property is a safety one: “Whenever

the train is inside the gate, the gate should be closed”. Using parallel timed automata with

non-instantaneous actions we can state finer properties. For example we could be interested in

verifying the following two ones:

1. “Whenever the train approaches the gate, the gate closes, and when the train initiates to

cross the gate, the action of closing it should be completed”.

2. “Every time, after the train crosses the gate, the gate must open, and the action of opening

the gate should be initiated only when the train has completed the action of crossing it”.

Both the properties could be expressed as conditions on the language accepted by the parallel

composition (Train ‖ Gate ‖ Controller) by specifying that, for property 1., the selected

accepted words should refer to the initiation of crossing and to the completion of down, while

for property 2. they should refer to the completion of crossing and to the initiation of up.

6. Simulation for Effectiveness

In this section we define a simple construction that, given a parallel composition P = (N1 ‖ N2)

of timed automata with non-instantaneous actions and a partition (I, C) of its alphabet Σ, builds

a timed automaton with ǫ edges recognizing exactly Ls(I,C)(P). This is done in order to make the

parallel composition effective: properties can be checked on the timed automaton resulting from

the construction and, for this, verification techniques and developed tools for timed automata

can be used [3, 10, 16, 19].

Let P = (N1 ‖ N2) is a parallel composition of timed automata with non-instantaneous

actions.

1. Construct the simulator automata TN1 , TN2 of N1, N2 respectively (see Section 3).

2. Construct the parallel composition of timed automata TP = (TN1 ‖ TN2) [7].

3. Apply the relabeling function g(I,C) defined in Definition 3.2 to the labels of the transitions

of TP obtaining the automaton TP(I,C) with ǫ edges.

Theorem 6.1. Ls(I,C))(P) = L(TP(I,C)). ⊓⊔

Clearly, if we have more than 2 automata the construction extends naturally to the general case.

First, do step 1 and step 2 for the automata N1 and N2. This yields an automaton P ′. Do

step 1 for the successive automaton N3 and construct the parallel composition of P ′ and TN3 .

Iterate until all automata have been considered and, finally, do step 3.

12 Barbuti et al. /Timed automata with non-instantaneous actions

References

[1] Aceto, L., Bouyer, P., Burgueño, A. and Guldstrand Larsen, K. The Power of Reachability

Testing for Timed Automata. Proc. Foundations Software Technology and Theoretical

Computer Science, Springer LNCS 1530, 245–256, 1998.
[2] Aceto, L., Burgueño, A. and Guldstrand Larsen, K. Model Checking via Reachability

Testing for Timed Automata. Proc. TACAS, Springer LNCS 1384, 263–280, 1998.

[3] Alur, R., Courcoubetis, C. and Dill, D.L. Model-Checking in Dense Real-time. Information

and Computation, 104, 2–34, 1993.
[4] Alur, R., Courcoubetis, C., Halbwachs, N., Dill, D.L. and Wong-Toi, H. Minimization of

Timed Transition Systems. Proc. CONCUR 1992, Springer LNCS 630, 340–354, 1992

[5] Alur, R., Courcoubetis, C. and Henzinger, T.A. The Observational Power of Clocks. Proc.

CONCUR 1994, Springer LNCS 836, 162–177, 1994.
[6] Alur, R. and Dill, D.L. Automata for Modelin Real-time Systems. Proc. ICALP’90, Springer

LNCS 443, 322–335, 1990.
[7] Alur, R. and Dill, D.L. A Theory of Timed Automata. Theoretical Computer Science, 126,

183–235, 1994.

[8] Alur, R., Fix, L. and Henzinger, T.A. Event-Clock Automata: A Determinizable Class of

Timed Automata. Theoretical Computer Science, 211, 253-273 (1999).
[9] Alur, R. and Henzinger, T.A. Back to the Future: Towards a Theory of Timed Regular

Languages. Proc. FOCS 1992, 177–186, 1992.

[10] Alur, R. and Henzinger, T.A. A Really Temporal Logic. Journal of ACM, 41, 181–204,

1994.

[11] Alur, R., Itai, A., Kurshan, R.P. and Yannakakis. M. Timing Verification by Successive

Approximation. Information and Computation, 118, 142–157,1995.
[12] Bérard, B., Petit, A., Diekert, V. and Gastin P. Characterization of the Expressive Power

of Silent Transitions in Timed Automata. Fundamenta Informaticae, 36, 145–182, 1998.

[13] Choffrut ,C. and Goldwurm, M. Timed Automata with periodic Clock Constraint. Int.

Report 225-98, 1998.
[14] Henzinger, T.A. and Kopke, P.W. Verification Methods for the Divergent Runs of Clock

Systems. Proc. Formal Techniques in Real-Time and Fault-Tolerant Systems, Springer

LNCS 863, 351–372, 1994.
[15] Henzinger, T.A., Manna, Z. and Pnueli, A. Temporal Proof Methodologies for Timed

Transition Systems. Information and Computation, 112, 273–337, (1994).

[16] Henzinger, T.A., Nicollin, X., Sifakis, J. and Yovine, S. Symbolic Model Checking for

Real-Time Systems. Information and Computation, 111, 193–244, 1994.
[17] Jahanian, F. and Mok, A.K. A Graph-Theoretic Approach for Timing Analysis and its

Implementation. IEEE Transactions on Computers, 36, 961-975, 1987.

[18] Leveson, N. and Stolzy, J. Analyzing Safety and fault Tolerance using Timed Petri Nets.

Proc. Theory and Practice of Software Development, Springer LNCS 186, 339–355, 1985.
[19] Yovine, S. Model Checking Timed Automata. Lectures on Embedded Systems, Springer

LNCS 1494, 114–152, 1996.

