Fundamenta Informaticae 1
10S Press

A Decidable Notion of Timed Non-Interference

Roberto Barbuti

Luca Tesei

Dipartimento di Informatica

Universié di Pisa

Via F. Buonarroti, 2

56127 Pisa - Italy

email: {barbuti,tesei}@di.unipi.it

Abstract. We present a notion of non-interference which embodiesaotiem
of time. Itis useful to verify the strength of a system ageaitacks depending
on the frequency of certain actions. In particular we giveeidiable definition
of non-interference which can be checked by using existergivation tools.
We show an application example of our notion of non-intefee by defining
a variant of the classical Fischer’s mutual exclusion protand by analyzing
its strength against attacks.

1. Introduction

The use of the TCP/IP protocol for internetworking has lechtglobal system of
interconnected systems which is referred as the Intermete$ts opening and com-
mercialization, the Internet has become a popular targetacks. Today the Internet
security problems are the center of attention, generatinghnfear throughout the
computer and telecommunications industry.

A class of possible attacks to network components is basagserof the time.
Time can be used to gather information, as in [9, 15, 19], whiee execution time is
used to reveal a secret key. Time can be also used in dirackattlf the frequency
of the intrusion is high enough, the attacked system canndt properly.

In this paper we show how to analyze the strength of a systémrespect to the
frequency of attacks. To this purpose we specify the systetmied automatd4].

2 Barbuti and Tesei/ A Decidable Notion of Timed Non-Int&fee

Timed automata are widely recognized as a standard modelekuribing systems
in which the time plays a fundamental role. They have beemlyistudied for their
possible use in the verification of real-time systems [1,, 3,33, 14, 20].

In order to do the analysis, we define a notion of timed noerfatence that
embodies also the notion of time and is suitable to deteetference due to the
frequency of certain actions. To show an example of our aistgchnique we define
a variant of Fischer’'s mutual exclusion protocol [16]. Tige with the processes
executing the protocol, we specify, still using timed audda) an intruder and the
frequency of its attacks. The timed non-interference aslgf the strength of the
protocol against the intruder can be based on a reachaikefiity\We define a condition
on the frequency which guarantees the correctness.

The paper is organized as follows. In Section 2 we shortlgltéicmed automata.
In Section 3 we give the notion ohterference that is the ability of an attacker
of altering the proper behavior of a system (actually, asaljsue define thenon-
interferenceproperty, that is the absence of interference). The notidnterference
we give is decidable and it is related to the frequency otk#aSection 4 presents a
variant of Fischer's protocol of mutual exclusion. We shiattthe protocol can be
broken only by intrusions with high frequency. Thus any ke with a frequency
of attacks lower than a given bound is non-interfering with i

2. Timed automata

In this section we recall the definition of timed automata [4]the following, R is
the set of real number® =" is the set of non-negative real numbers @1dis the set
of positive real numbers. Alocktakes values fromR=°. Given a sett’ of clocks,
aclock valuationover X is a function assigning a non-negative real number to every
clock. The set of clock valuations &f is denotedVy. Givenv € Vy andd € R,
v + ¢ denotes the valuation that maps each cleck X into v(z) + 9.

Given a sett of clocks, aresetry is a subset oft’. The set of all resets ot is
denoted byl y. Given a valuationv € Vy and a reset, v\ denotes the valuation

0 if x €~

v(iz) fxdy

Given a setY of clocks, the set y of clock constraintover X' are defined by
the following grammar:

Y w=true|false| Y A |) | xt

wherex € X, t € IN, and# is a binary operator if<,>, <,>,=}. Clock
constraints are evaluated over clock valuations. Thefaatisn by a valuation €
Vy of the clock constraint) € ¥y, denoteds = v, is defined as follows:

v\y(z) =

v = true andv [~ false

Barbuti and Tesei/ A Decidable Notion of Timed Non-Int&fee 3

V}Zlﬂl/\lbg iff V}Zlﬂl andu#z/zg
vl i v
viEx#t iff v(r)#t

Definition 2.1. (Timed automaton)
A timed automator’ is a tuple
(@Q,%,E,1,X), whereQ is a finite set of states, is a finite alphabet of action§, is
a finite set of edged, C @ is the set of initial states} is a finite set of clocks. Each
edgec € £isatuplein@Q x Uy x X x 'y x Q.
If e = (¢,,0,v,¢") is an edgey is thesource ¢’ is thetarget, + is theconstraint
o is thelabel, v is thereset

The semantics of a timed automatdnis based on an infinite transition system
S(T) = (S,—), whereS is a set of states ané is the transition relation. The states
S of §(T') are pairs(q,), whereq € @ is a state ofl’, andv is a clock valuation.
The initial state ofS(7") is a statesy = (qo, 10), Wheregy € I is an initial state off”
andy is the valuation which assigristo every clock inX'. At any stateg, given a
valuationv, T' can stay idle or it can perform an action labeling an outgeidgee.

If T" stays idle, a transition is possible to a stateS¢1") where the state df’ is the
same, but the valuation has been maodified according to theedaime. IfI" moves
along an outgoing edge = (q,, 0,7, q’), this corresponds to a transition, labeled
by o, of S(T) from the statgq, v) to the state;, v\~. This transition is possible
only if the current clock valuation respects the constraimf e. The rules to derive
the transitions o(7") are the following:

o€ R , (q,9,0,7,¢) € E,v =
(@) (qv+6) = (gr) -5 v\Y)

Rule 1. represents the case in whighstays idle in a state and the time passes,
while Rule2. corresponds to the occurrence of an action.

1.

Definition 2.2. (Action sequence, Run)
LetT = (Q,%,€&,1,X) be a timed automaton and lét= sg doy g By bean
infinite derivation of the transition syste&(7):

- Thetime sequencg; of the time elapsed from statg to states; in d is defined
as follows:

to=0
0 ifl;eX

ti1 =ti+ _
B I; otherwise

4 Barbuti and Tesei/ A Decidable Notion of Timed Non-Int&fee

- Theevent sequenad d is the sequence of the events occurred dugdingelud-
ing the elapsed timesiy, to)(l1,t1) - ..

- The action sequencef d is the projection of the event sequencedabn the
pairs{(l,t) |l € ¥}

Let d be an infinite derivation of(7") and letr be its action sequence. We say
thatr is arun of 7' if it satisfies the following conditions:

1. r is infinite; i.e. whenever a stateof T is entered, a transition daf from ¢
will be eventually taken in the rest of the derivatién

2. thetime progress conditioms satisfied: for eacth/ € R=° there exist an
element(c;, t;) of the sequence such that; > M.

The set of all the runs of a timed automatbrconstitutes its trace semantics.

Note that the first condition discards the derivations inchtthe automaton enters
a state and lets the time to elapse forever in that state wtitherforming any other
transition. Furthermore, the second condition discardsrtims in which the time
sequence converges to a real number (also called Zeno runs).

Timed automata can be equipped with a special action, thetslctione. Some
transitions of the automaton can be labeled by this actiahtlais means that, when
traversed, no action is observed. Note th& >, so thee-actions do not appear in
the action sequence of a derivation and, thus, in the rurfsecdititomaton.

The design of complex systems can be simplified by modelihgysiems with
different timed automata and considering, for the wholéesysthe product of them.
The synchronized product operation is a syntactic operdtiween timed automata.

Definition 2.3. (Synchronized product of timed automata)

LetTy = (Q1,%1,&1, 11, X1) andTy = (Q2, X9, &, I2, X)) be two timed automata
with X1 N X, = (). The synchronized product @ and75, denoted byl || T, is
the following timed automaton:

Ti||Th = (Q1 X Q2,%1 UXo, &, 11 X I5, X1 UXy)

where¢ is such that:
1. Synchronization actions

Vo € X1 N Yo, V(q1,Y1,0,71,¢)) € E1,Y(q2, V2, 0,72, %) € &2

& contains((q1, g2), Y1 A P2, 0,71 U e, (44, 45))
2. Ty actions

Vo € ¥1\X2,V(q,%,0,7,¢) € £1,Vs € Qo

& contains((q, s), v, 0,7, (¢, s)

Barbuti and Tesei/ A Decidable Notion of Timed Non-Int&fee 5

3. T5 actions
Vo € 22\217v(q7w70777q,) € 827vs € Ql

& contains((s, q),v, 0,7, (s,q"))

The automatorf || 75 is called the product automaton and the autorfiatand
T, are called components.

The product automaton can perform the synchronizatiorsitians only if all
the components can perform it and, in this case, all the coens perform it in the
same instant. Other transitions can be performed by corm®ireependently from
each other according to their original specification.

3. A Notion of Timed Non-interference for Timed Automata

Non-interference for concurrent systems has been widetied at various levels. In
particular it has been analyzed using specification folsnaias process algebra (see,
for example, [10, 11, 17, 18]). Usually the actions of a systee divided into high
level and low level ones, and an intruder is allowed to penfdre high level ones. In-
tuitively, the system respects the non-interference pigpkits behavior in absence
of high level actions is equivalent to its behavior, obsdree low level actions, when
high level actions occur. In this formulation, the systemriaffected from the attacks
if its low level behavior does not change. The notion of noiefiference has been
reformulated in [12] in a real-time setting using a disctéte process algebra.

We now define a notion of non-interference that embodiesatiemof time, in a
dense time domain, using timed automata. This definitiondb shat a system is-
non-interfering if its low level behavior is unaffected biyeecks which are separated
by more tham time units.

A notion of n-non-interference was already introduced in [8], wherdoigavior
of timed automata is described in terms of the accepted &gwyuln this paper we
base the notion of non-interference on trace semanticseawihability.

Definition 3.1. (Restriction to low level actions)

LetT = (Q,%,&,1,X) be atimed automaton over an alphaklet H U L where
HNL = 1. HandL are the sets of high and low level actions respectively. We
denote byT'|; an automaton obtained frofi by substituting syntactically every
edge(q, v, 0,7,4¢") € £ such thatr € H with the edg€q, false, 7,7, ¢').

Thus,T'|1 behaves a%’ but all the runs in which at least one high level action is
executed are discarded because high level actions are ewafeled. We refer to the
behaviors ofl'|, as the low behaviors or basic behaviors.

6 Barbuti and Tesei/ A Decidable Notion of Timed Non-Int&fee

true, L, {} true, L, {}

) true, H, {x_interf})
—(i0 11 x_interf> n,

H, {x_interf}

Figure 1. The structure dhterfy;

Definition 3.2. (Hiding of high level actions)

LetT = (Q,%,&,1,X) be atimed automaton over an alphabet H U L where
HNL = (. We denote by"\ H an automaton obtained froiby substituting syntac-
tically every edgeq, 1, 0,v,¢') € £ such that € H with the edgdq, ¥, €,7,q).

Thus, T\ L behaves a8’ but all the high level actions are substituted by the silent
actione, thus their occurrence is not visible in the trace semantics

Consider, now, the automatdnterf’; in Figure 1, where an arc having as label
a set of action represents a set of edges, one for each actiba set L or H), with
the same clock constraint and clock reset. This automatowslthe execution of
high-level actions only when they are separated by at letiste units.

Given a timed automatofi, the synchronized product @f with Intert?;, T ||
Interf?;, allows to observe the set of all behaviorsioBuch that high-level actions
occur at times separated by an interval whose length isagréan, or equal ta. Of
course, we are assuming tatoes not reset the cloekinterf.

Definition 3.3. (n-non-interference)

Let = be an arbitrary equivalence relation between timed autmat

LetT = (Q,%,&,1,X) be atimed automaton with an alphabet= H U L where
H N L = 0. T is n-non-interferingiff

T, = (T || Intert)\H

Thus, T is n-non-interfering iff its low behaviors do not change, wittspect to
the given equivalence, whenever either high level actioasat performed or they
are performed with a delay of at leastime units between them and then they are
hidden.

Proposition 3.1. Let T be a timed automaton and< IN. If T' is n-non-interfering
thenT is also(n + 1)-non-interfering.

Proof:
It is simple to see that the condition efnon-interference depends on the frequency

Barbuti and Tesei/ A Decidable Notion of Timed Non-Int&fee 7

of the occurrence of high-level actions. More preciselgai be missed only if such

a frequency is too high. Thus, if the condition holds for aaiern it will hold for
everyn’ > n because the’-non-interference requires the same equivalence allowing
at most a lower frequency of high-level actions thanstheon-interference, which is
verified by hypothesis. a

Definition 3.4. (n-trace-non-interference)

LetT = (@, %, €&, 1,X) be atimed automaton with an alphabet= H U L, where
H N L =0, and letn be a natural numbef is n-trace-non-interferingff the set of
runs ofT'|;, is equal to the set of runs ¢f" || Interf’;)\ H.

This notion is natural for timed automata, but suffers of gatize decidability
result for trace equivalence of timed automata (see [4]).

Now, we introduce an equivalence which is decidable and earsbd to define a
different notion ofn-non-interference. This equivalence focuses the reaelsbates
of the system. The decidability of the new notion relies oa decidability of the
reachability test for timed automata [4]. This test is onghaf most used ways of
verification of properties of a timed automaton and all thelgananaging timed
automata implement it efficiently.

Definition 3.5. (n-state-non-interference)

LetT = (@, %, €&, 1, X) be atimed automaton with an alphabet= H U L, where
H N L = (), and letn be a natural numbef is n-state-non-interferingff the set of
reachable states df|;, is equal to the set of reachable stategDf|| Interf’;)\ H,
projected on the states @f.

Let R be the set of reachable states/tf . Since this automaton can not perform
high level actions,R contains that states af that can be accessed without the aid
of any high level activity. The notion of-state-non-interference then requires that
R does not change when a controlled high-level activity isvedld. This control
imposes that any two subsequent high level actions areategdby at least time
units.

The following proposition shows that the two notions of rinterference take
into account of different aspects of systems.

Proposition 3.2. Let T" be a timed automatoril’ is n-trace-non-interferings 1 is
n-state-non-interferingT’ is n-state-non-interferings 7' is n-trace-non-interfering.

Proof:

Let we show two counter examples. Figure 2 shows an autonvetih is n-trace-
non-interfering for alln € IN. This is because the high level transition labeled
with h from state0 to state2 is followed, possibly without delay, by a transition
labeled with the low level actiohfrom state2 to statel. Thus, when the automaton
T is considered, the actiolh can not be performed and the runs are of the form

8 Barbuti and Tesei/ A Decidable Notion of Timed Non-Int&fee

true, I, {}

true, |, {}

Figure 2. A system that is-trace-non-interfering, but net-state-non-interfering

C true, I_1, {}

true. h. {}

true, |_2, {}

Figure 3. A system that is-state-non-interfering, but nettrace-non-interfering

(I,t0)(l,t1)--- in which it is only required that; < ¢;;1. When the automaton
(T || Interf?%)\ H is considered, the actidncan be performed, but is not observable.
Thus the runs are of the same form of thoseTdf because there are not clock
constraints. On the other hand, the sysfeof Figure 2 is not:-state-non-interfering
for anyn € IN. This is because the statds reachable i7" || Interf’;)\ H for all
n € IN and it is not reachable if| ..

Figure 3 shows the counterexample for the converse. In #ss i is clear that
the automaton isi-state-non-interference. On the other hand, all the rung|ef
begin with(ly, o) - - -, but the automatofil" || Interf’;)\ H has a run beginning with

(ll,to)---. O

4. An example of timed non-interference

In this section we show the utility of non-interference gsal to state the robust-
ness, with respect to external attacks, of a classical girbesed mutual exclusion
protocol.

4.1. The Fischer Protocol for Mutual Exclusion

The protocol was suggested by Michael Fischer and repont¢di6]. The signifi-
cance of the protocol is due to its speed, that makes it deifalp multiprocessor

Barbuti and Tesei/ A Decidable Notion of Timed Non-Int&fee 9

computers or time-critical embedded systems.

Suppose that two processdy, and P, are running in parallel, competing for a
critical section, and assume that atomic reads and writepermitted to a shared
variablez. Assume also that every access to the shared memory comgtainakes
acc units of time. Each process executes the following algorjtivhere the code
both of the critical section and the one outside the prot@catsumed not to modify
xZ.

repeat
await x=0;
X:=1;
delay b
until x=i;
Critical Section;
x:=0

Each procesd’; is allowed to be in its critical section iff = i. The statement
await x=0 waits until the value of: becomes). The statemenielay b delays a
process fob time units, as measured by the process clock. Here we assatrée
local clocks of the two processes proceed at the same rath dEatement takes an
amount of time to be executed, in particular we assume teaighignment statement
takes at most time units. Recall that an access to the shared memory cardai
is atomic, and the process&s and P, can compete for accessing it, thus the time of
each assignment, may depend on the resolution of conflicts.

The Fisher’s protocol ensures mutual exclusiom it b.

Each process can be represented by a timed automaton likedha Figure 4, a
slightly different representation of the one given in [6, 7]

State0 corresponds to the local computation of the processs not a clock
variable: it represents the shared variable of the protacis a clock variable that is
used to count time as specified in the protocol specificafitie. process can start the
protocol for accessing the critical section only if the \eabf x is equal to0. This is
represented by ther = 0) p, action: a synchronization action with the serializer (see
Figure 5). At this point (stateé) it can assigr: (in a time shorter thab!) and it waits
b time units for testing it, and, depending on its value, faieeng the critical region
(statecritical). On exiting the critical section, the process sets theevafu: to 0.

It is important to note thaP; and P, must not synchronize on actions, but only
on the value of variable. Thus the same action executed by a process is considered
different if executed by another process; for instance=0)p,, executed by, is
different from &:=0)p,, executed byP.

Actually the assignment has to occur withitime units and: has to be less than Here, for simplic-
ity, we useb in both cases.

10 Barbuti and Tesei/ A Decidable Notion of Timed Non-Int&fee

y=b, (x<>i)|:i> {3

true, (x:O)gi ,{y} y<b, (Xi:i)p?, v}

y>0, outCS, {y} y=0, inCS, {}
- |

Figure 4. Automator;

The automaton of Figure 4 does not consider the time, for accessing the
shared memory. Thus, whdf and P, are combined in parallel they can both start
an access te, and the time interval between these accesses could besishueh
acc. This is in contrast with the assumption that accessesai@ atomic.

To force the accesses to be atomic and to control the valdeeofariabler, we
add, to the system composed by the two processes, the zariafiFigure 5 which
synchronizes withP; and P, on every action which performs an accessctoThe
clocky is used to ensure that every access on the variaftiest and/or assignment)
is performed after at leastcc time units since the last one. This assures atomicity.
Note that the states of the automaton of Figure 5 are asedaiath the three possible
values of variabler. The actiongz <> i)p, and(x = i)p, correspond to the test
of x = i or x = i respectively. They can be taken by the procBsenly if the test
is true, according to the information on the valuerdield in the current state of the
serializer.

Let us analyze the behavior of the two procesggsand P»,. The automaton
(Py || P, || serializer), obtained by the synchronized product of the components, ca
reach any possible state, , s2, s) (wWheres; ands, are states oP; andP,, ands is a
state of the serializer) but the statesitical, critical, s), because of the correctness
of the mutual exclusion protocol.

Let us assume now that there is a upper bounsl, on the time needed to execute
the critical section after the variableis checked. This assumption is reasonable
when the operations in the critical section are fast and Isinipr example the ones
for updating a counter. lics < a+ b, the previous protocol can be modified in order
to decrease the delay in accessing the critical section waloamflict is present. The

Barbuti and Tesei/ A Decidable Notion of Timed Non-Int&fee 11

(X:1)P ,
y>=acc,

y>=acc, (x<>2),,
(x:=0) ,, : iy 2
i} z

y>=acc,

— (x::l)Fi '

{y}

y>=acc,
y

(x<>1)P ,
1

Figure 5. The serializer

idea is that, because:s < a+b, after executing successfully the protocol and before
entering the critical section, a process can signal to therdhat the protocol can be
executed again. This is safe because the time for exectlmingritical section is less
than or equal to the time taken by the protocol itself. Adjuaks includes the time
for assigning the valué to x.

The new protocol is now the following.

repeat
await x=0;
X:=1;
delay b

until x=i;

x:=0

Critical Section;

Let us represent proce$¥ executing the new protocol by the timed automaton
of Figure 6.

12 Barbuti and Tesei/ A Decidable Notion of Timed Non-Int&fee

y=b, (x<>i)|:i> {3

y<b, (x:=i)pi, {v}
= ucs, y=b,

{1

y=0, inCS, {}

|

true,(x::O)P , {y}

Figure 6. AutomatorP;

4.2. Timed Non-Interference

Suppose the existence of an intruder which is able to readvaitelthe shared vari-
ablex. Such an intruder can be either a malicious host connectttktnetwork, or
simply another component of the system accessing the shragetbry for other pur-
poses. The possible behaviors of the intruder are deschipélde timed automaton
in Figure 7. Note that to implement atomic accesses tihe serializer must be ex-

tended for taking account also of the actions of the intrudiae modified serializer
is denoted byerializer’.

(x:=0) att

true,

true,
(x:=1)
{

att

(x:=2)

att

Figure 7. The intruder

2Actually only writing actions are critical, thus we restribe system to them.

Barbuti and Tesei/ A Decidable Notion of Timed Non-Int&fee 13

Consider now the automatdh= (P || P, || serializer’ || intruder)

In order to apply Definition 3.5 we consider the actions ofittieider as the high
level actions, thus? = {(x := 0)att, (X := 1)att, (X := 2)att }-

We want to show thdl’ is n-state-non-interfering, for some This corresponds
to show that the set of reachable states of the systB|| P, | serializer’ ||
intruder || Interf;)\ H, projected on the states @P| || P || serializer’ || intruder),
is equal to the set of reachable states of the system in whittheaactions of the in-
truder are forbidden. We know, by the previous analysis efdysstem without the
intruder, that the stategritical, critical, s) (wheres is any state of the serializer)
are not reachable. Thus, in this example, the condition dinien 3.5 reduces to
verify that the stateécritical, critical, s,0) of (P] || P} || serializer’ || intruder ||
Interf%;)\ H (projected on the states 0P || P} || serializer’ || intruder)) are still
unreachable.

Remark that the original Fischer protocol was very weak fthis point. If the
intruder set the variablketo 0 when a process is in its critical region, the other process
is enabled to enter the critical region too.

First let us show that if the value afis lower enough the system can hestate-
interfering, as showed in Figure 8, where: = 1, b = 6, ucs = 6 andn = 2. Each
depicted interval corresponds dec time units.

i i nCs
F’l x=0 x: =1 x=1 crash
x: =0
! inCs
B x=0 X: =2 x=2 crash
x: =0
| nt ruder x: =1 x: =2

Figure 8. An attack to the protocol

Observing the attack to the protocol reported in Figure 8 @tesgme hints to
obtain a general result. ifcs < a 4+ b anda < b (these are the conditions needed by
the protocol for its correctness in absence of attacks),ameconclude the following.

Proposition 4.1. For alln > b the system(P| || P, || serializer’ || intruder) is
n-state-non-interfering.

Proof:

Note that, in order to break the protocol, the intruder, wphersent, has to perform
two successive assignmentsatdi.e. two subsequent high level actions in our for-
mulation) in a limited time interval. To see this, supposa tioth P| and P, start a
session of the protocol and they have reached their stat8sippose, at this point,
thatz = 2. This means that the first process that started the sessigfvalhe

14 Barbuti and Tesei/ A Decidable Notion of Timed Non-Int&fee

normal behavior at this point would be thaf, seeingr = 2, returns to its idle state
(statel). But suppose that, here, the attacker sets- 1 after P; entered its state
2 and reset its clocly (ypé). Now, the session proceeds af{l when its clocky
equalsb, enter its staté because the attacker has seo 1. For now onP; pro-
ceeds without any further control toward the critical sattiLet us return td>;. It
was waitingb time units before testing the value ofand deciding whether enter the
critical section or not. Now the attacker has to set= 2 before P; test the value
(whenypé equalsh) because currently equalsl. The attacker, to break the protocol,
should be allowed to do such an assignment. Surely it is fowadl if » > b because
the clockx_interf (the clock ofInterf%; constraining the occurrence of high level
actions) was reset after clogk,; was reset. Thus_interf is less theryp,;. To do
the assignment (an high level actian)interf must be greater than or equal+o
and to break the protocol the assignment has to be done tg,qg)m{ualsb. That is,
it must holdx_interf < ypy <b andx_interf > n. This is not possible ifi > b.
The previous argumentation does not assume anything dmualue ob. Thus,
if n > b, the set of reachable states of the system when the intrutemath the
constraints expressed Ibytert’; is equal to the set of reachable states of the system
when the intruder does not perform any action. O

Concluding, byn-state-non-interference analysis, we are able to obtairppar-
bound on the frequency of attacks to the protocol under wiighnot affected by
the attack.

5. Concluding remarks

In this paper we have defined, using a timed automata basedaapp a notion of
timed non-interference suitable to capture systems fraatefference due to high
frequency of certain actions. Then, we have showed an exaofptimed non-
interference analysis.

Note thatn-state-non-interference does not guarantee that thedaticould not
interfere in another manner, for instance causing a deladidforbidding a process to
reach the critical section all of the times. These otheckftalo not strongly depend
on the frequency of the action of the intruder and should loeesm$ed using different
methods.

References

[1] Aceto, L., Bouyer, P., Burguefio, A. and Guldstrand leawsK. (1998) The Power of
Reachability Testing for Timed Automata. In Proceeding$-ofindations Software
Technology and Theoretical Computer Science, Springer&N&30, 245-256.

Barbuti and Tesei/ A Decidable Notion of Timed Non-Int&fee 15

[2] Aceto, L., Burguefio, A. and Guldstrand Larsen, K. (1p®del Checking via Reach-
ability Testing for Timed Automata. In Proceedings of TAC8& Springer LNCS
1384, 263-280.

[3] Alur, R., Courcoubetis, C. and Dill, D.L. (1993) Modek€&cking in Dense Real-time.
Information and Computatiqri04, 2—34.

[4] Alur, R. and Dill, D.L. (1994) A Theory of Timed Automatalheoretical Computer
Sciencel26, 183-235.

[5] Alur, R. and Henzinger, T.A. (1994) A Really Temporal Liog Journal of ACM 41,
181-204.

[6] Abdulla, P.A. and Jonsson, B. (1998) Networks of timedgasses. In Proceedings of
TACAS’98, Springer LNCS 1384, 298-312.

[7] Alur, R., Courcoubetis, C., Halbwachs, N., Henzinge#.T Ho, P.-H., Nicollin, X.,
Olivero, A., Sifakis, J. and Yovine, S. (1995) The AlgoritltnAnalysis of Hybrid
Systems.Theoretical Computer SciencE38 3—-34.

[8] Barbuti, R., De Francesco, N., Santone, A. and Tesei, INoton of non-Interference
for Timed Automata (2001) In Proceedings of ConcurrencgcHjration and Program-
ming Workshop (CS&P’2001), (L. Czaja ed.), Warsaw, Poladctober 2001.

[9] Dhem, J-F., Koeune, F., Leroux, P-A., Mestr, P., Quigqual-J. and Willems, J-L.
(2000) A Practical Implementation of the Timing Attack. IroPeedings of CARDIS
1998, Springer LNCS 1820, 167-182.

[10] Focardi, R. and Gorrieri, R. (1996) Automatic Compiasitil Verification of Some
Security Properties. In Proceedings of TACAS’'96, Sprirgé€S 1055, 167-186.

[11] Focardi, R. and Gorrieri, R. (1997) The Compositionat& ity Checker: A Tool for the
Verification of Information Flow Security Propertie$£EE Transactions on Software
Engineering23(9), 550-571.

[12] Focardi, R., Gorrieri, R. and Martinelli, F. (2000) brmation Flow in a Discrete Time

Process Algebra. In Proceedings of 13th IEEE Computer 8gdtoundations Work-
shop (CSFW’00), (P. Syverson ed.), IEEE press, Cambridgglaiad, July 2000.

[13] Henzinger, T.A. and Kopke, P.W. (1994) Verification Mets for the Divergent Runs of
Clock Systems. In Proceedings of Formal Techniques in Rima¢ and Fault-Tolerant
Systems, Springer LNCS 863, 351-372.

[14] Henzinger, T.A., Nicollin, X., Sifakis, J. and Yovin8, (1994) Symbolic Model Check-
ing for Real-Time Systemdnformation and Computatiqrill, 193-244.

[15] Kocher, P.C. (1996) Timing Attacks on Implementatioh®iffie-Hellman, RSA, DSS,
and Other Systems. In proceedings of CRYPTO 1996, Spring&3.1109, 104-113.

[16] Lamport, L. (1987) A Fast Mutual Exclusion Algorith’ACM TOPLASS, 1-11.

[17] P.Y. A. Ryan, S. A. Schneider. (2001) Process AlgebrhMan-InterferenceJournal
of Computer Security9(1/2), 75-103.

[18] A.W. Roscoe, J.C.P. Woodcock, L. Wulf. (1996) Non-hfiéeence Through Determin-
ism. Journal of Computer Securit$(1).

16 Barbuti and Tesei/ A Decidable Notion of Timed Non-Int&fee

[19] Schindler, W. (2000) A Timing Attack against RSA withetichinese Remainder The-
orem. In Proceedings of CHES 2000, Springer LNCS 1965, 1989-1

[20] Yovine, S. (1996) Model Checking Timed Automata. Leetion Embedded Systems,
Springer LNCS 1494, 114-152.

