
Fundamenta Informaticae 1

IOS Press

A Decidable Notion of Timed Non-Interference

Roberto Barbuti

Luca Tesei

Dipartimento di Informatica

Universit̀a di Pisa

Via F. Buonarroti, 2

56127 Pisa - Italy

email: {barbuti,tesei}@di.unipi.it

Abstract. We present a notion of non-interference which embodies the notion
of time. It is useful to verify the strength of a system against attacks depending
on the frequency of certain actions. In particular we give a decidable definition
of non-interference which can be checked by using existing verification tools.
We show an application example of our notion of non-interference by defining
a variant of the classical Fischer’s mutual exclusion protocol and by analyzing
its strength against attacks.

1. Introduction

The use of the TCP/IP protocol for internetworking has led toa global system of
interconnected systems which is referred as the Internet. Since its opening and com-
mercialization, the Internet has become a popular target toattacks. Today the Internet
security problems are the center of attention, generating much fear throughout the
computer and telecommunications industry.

A class of possible attacks to network components is based onuse of the time.
Time can be used to gather information, as in [9, 15, 19], where the execution time is
used to reveal a secret key. Time can be also used in direct attacks. If the frequency
of the intrusion is high enough, the attacked system cannot work properly.

In this paper we show how to analyze the strength of a system with respect to the
frequency of attacks. To this purpose we specify the system by timed automata[4].

2 Barbuti and Tesei / A Decidable Notion of Timed Non-Interference

Timed automata are widely recognized as a standard model fordescribing systems
in which the time plays a fundamental role. They have been widely studied for their
possible use in the verification of real-time systems [1, 2, 3, 5, 13, 14, 20].

In order to do the analysis, we define a notion of timed non-interference that
embodies also the notion of time and is suitable to detect interference due to the
frequency of certain actions. To show an example of our analysis technique we define
a variant of Fischer’s mutual exclusion protocol [16]. Together with the processes
executing the protocol, we specify, still using timed automata, an intruder and the
frequency of its attacks. The timed non-interference analysis of the strength of the
protocol against the intruder can be based on a reachabilitytest. We define a condition
on the frequency which guarantees the correctness.

The paper is organized as follows. In Section 2 we shortly recall timed automata.
In Section 3 we give the notion ofinterference, that is the ability of an attacker
of altering the proper behavior of a system (actually, as usual, we define thenon-
interferenceproperty, that is the absence of interference). The notion of interference
we give is decidable and it is related to the frequency of attacks. Section 4 presents a
variant of Fischer’s protocol of mutual exclusion. We show that the protocol can be
broken only by intrusions with high frequency. Thus any attacker with a frequency
of attacks lower than a given bound is non-interfering with it.

2. Timed automata

In this section we recall the definition of timed automata [4]. In the following,R is
the set of real numbers,R≥0 is the set of non-negative real numbers andR+ is the set
of positive real numbers. Aclock takes values fromR≥0. Given a setX of clocks,
aclock valuationoverX is a function assigning a non-negative real number to every
clock. The set of clock valuations ofX is denotedVX . Givenν ∈ VX andδ ∈ R+,
ν + δ denotes the valuation that maps each clockx ∈ X into ν(x) + δ.

Given a setX of clocks, aresetγ is a subset ofX . The set of all resets ofX is
denoted byΓX . Given a valuationν ∈ VX and a resetγ, ν\γ denotes the valuation

ν\γ(x) =

0 if x ∈ γ

ν(x) if x 6∈ γ

Given a setX of clocks, the setΨX of clock constraintsoverX are defined by
the following grammar:

ψ ::= true | false| ψ ∧ ψ | ¬ψ | x#t
wherex ∈ X , t ∈ IN , and# is a binary operator in{<,>,≤,≥,=}. Clock

constraints are evaluated over clock valuations. The satisfaction by a valuationν ∈
VX of the clock constraintψ ∈ ΨX , denotedν |= ψ, is defined as follows:

ν |= true andν 6|= false

Barbuti and Tesei / A Decidable Notion of Timed Non-Interference 3

ν |= ψ1 ∧ ψ2 iff ν |= ψ1 and ν |= ψ2

ν |= ¬ψ iff ν 6|= ψ

ν |= x # t iff ν(x) # t

Definition 2.1. (Timed automaton)
A timed automatonT is a tuple
(Q,Σ, E , I,X), whereQ is a finite set of states,Σ is a finite alphabet of actions,E is
a finite set of edges,I ⊆ Q is the set of initial states,X is a finite set of clocks. Each
edgee ∈ E is a tuple inQ×ΨX × Σ× ΓX ×Q.

If e = (q, ψ, σ, γ, q′) is an edge,q is thesource, q′ is thetarget,ψ is theconstraint,
σ is thelabel, γ is thereset.

The semantics of a timed automatonT is based on an infinite transition system
S(T) = (S,→), whereS is a set of states and→ is the transition relation. The states
S of S(T) are pairs(q, ν), whereq ∈ Q is a state ofT , andν is a clock valuation.
The initial state ofS(T) is a states0 = (q0, ν0), whereq0 ∈ I is an initial state ofT
andν0 is the valuation which assigns0 to every clock inX . At any stateq, given a
valuationν, T can stay idle or it can perform an action labeling an outgoingedgee.
If T stays idle, a transition is possible to a state ofS(T) where the state ofT is the
same, but the valuation has been modified according to the elapsed time. IfT moves
along an outgoing edgee = (q, ψ, σ, γ, q′), this corresponds to a transition, labeled
by σ, of S(T) from the state(q, ν) to the stateq′, ν\γ. This transition is possible
only if the current clock valuation respects the constraintψ of e. The rules to derive
the transitions ofS(T) are the following:

1.
δ ∈ R+

(q, ν)
δ

−→(q, ν + δ)
2.

(q, ψ, σ, γ, q′) ∈ E , ν |= ψ

(q, ν)
σ

−→(q′, ν\γ)

Rule1. represents the case in whichT stays idle in a state and the time passes,
while Rule2. corresponds to the occurrence of an action.

Definition 2.2. (Action sequence, Run)
Let T = (Q,Σ, E , I,X) be a timed automaton and letd = s0

l0−→ s1
l1−→ . . . be an

infinite derivation of the transition systemS(T):

- Thetime sequencetj of the time elapsed from states0 to statesj in d is defined
as follows:

t0 = 0

ti+1 = ti +

0 if li ∈ Σ

li otherwise

4 Barbuti and Tesei / A Decidable Notion of Timed Non-Interference

- Theevent sequenceof d is the sequence of the events occurred duringd includ-
ing the elapsed times:(l0, t0)(l1, t1) . . .

- The action sequenceof d is the projection of the event sequence ofd on the
pairs{(l, t) | l ∈ Σ}

Let d be an infinite derivation ofS(T) and letr be its action sequence. We say
thatr is arun of T if it satisfies the following conditions:

1. r is infinite; i.e. whenever a stateq of T is entered, a transition ofT from q

will be eventually taken in the rest of the derivationd

2. the time progress conditionis satisfied: for eachM ∈ R≥0 there exist an
element(σi, ti) of the sequencer such thatti > M .

The set of all the runs of a timed automatonT constitutes its trace semantics.

Note that the first condition discards the derivations in which the automaton enters
a state and lets the time to elapse forever in that state without performing any other
transition. Furthermore, the second condition discards the runs in which the time
sequence converges to a real number (also called Zeno runs).

Timed automata can be equipped with a special action, the silent actionǫ. Some
transitions of the automaton can be labeled by this action and this means that, when
traversed, no action is observed. Note thatǫ 6∈ Σ, so theǫ-actions do not appear in
the action sequence of a derivation and, thus, in the runs of the automaton.

The design of complex systems can be simplified by modeling subsystems with
different timed automata and considering, for the whole system, the product of them.
The synchronized product operation is a syntactic operation between timed automata.

Definition 2.3. (Synchronized product of timed automata)
Let T1 = (Q1,Σ1, E1, I1,X1) andT2 = (Q2,Σ2, E2, I2,X2) be two timed automata
with X1 ∩ X2 = ∅. The synchronized product ofT1 andT2, denoted byT1 ‖ T2, is
the following timed automaton:

T1‖T2 = 〈Q1 ×Q2,Σ1 ∪Σ2, E , I1 × I2,X1 ∪ X2〉

whereE is such that:

1. Synchronization actions

∀σ ∈ Σ1 ∩ Σ2,∀(q1, ψ1, σ, γ1, q
′
1) ∈ E1,∀(q2, ψ2, σ, γ2, q

′
2) ∈ E2

E contains((q1, q2), ψ1 ∧ ψ2, σ, γ1 ∪ γ2, (q
′
1, q

′
2))

2. T1 actions

∀σ ∈ Σ1\Σ2,∀(q, ψ, σ, γ, q
′) ∈ E1,∀s ∈ Q2

E contains((q, s), ψ, σ, γ, (q′ , s)

Barbuti and Tesei / A Decidable Notion of Timed Non-Interference 5

3. T2 actions

∀σ ∈ Σ2\Σ1,∀(q, ψ, σ, γ, q
′) ∈ E2,∀s ∈ Q1

E contains((s, q), ψ, σ, γ, (s, q′))

The automatonT1 ‖ T2 is called the product automaton and the automataT1 and
T2 are called components.

The product automaton can perform the synchronization transitions only if all
the components can perform it and, in this case, all the components perform it in the
same instant. Other transitions can be performed by components independently from
each other according to their original specification.

3. A Notion of Timed Non-interference for Timed Automata

Non-interference for concurrent systems has been widely studied at various levels. In
particular it has been analyzed using specification formalisms as process algebra (see,
for example, [10, 11, 17, 18]). Usually the actions of a system are divided into high
level and low level ones, and an intruder is allowed to perform the high level ones. In-
tuitively, the system respects the non-interference property if its behavior in absence
of high level actions is equivalent to its behavior, observed on low level actions, when
high level actions occur. In this formulation, the system isunaffected from the attacks
if its low level behavior does not change. The notion of non-interference has been
reformulated in [12] in a real-time setting using a discretetime process algebra.

We now define a notion of non-interference that embodies the notion of time, in a
dense time domain, using timed automata. This definition is such that a system isn-
non-interfering if its low level behavior is unaffected by attacks which are separated
by more thann time units.

A notion ofn-non-interference was already introduced in [8], where thebehavior
of timed automata is described in terms of the accepted language. In this paper we
base the notion of non-interference on trace semantics and reachability.

Definition 3.1. (Restriction to low level actions)
Let T = (Q,Σ, E , I,X) be a timed automaton over an alphabetΣ = H ∪ L where
H ∩ L = ∅. H andL are the sets of high and low level actions respectively. We
denote byT |L an automaton obtained fromT by substituting syntactically every
edge(q, ψ, σ, γ, q′) ∈ E such thatσ ∈ H with the edge(q, false, σ, γ, q′).

Thus,T |L behaves asT but all the runs in which at least one high level action is
executed are discarded because high level actions are neverenabled. We refer to the
behaviors ofT |L as the low behaviors or basic behaviors.

6 Barbuti and Tesei / A Decidable Notion of Timed Non-Interference

true, L, {} true, L, {}

i1 x_interf≥ n,

 H, {x_interf}

true, H, {x_interf}
i0

Figure 1. The structure ofInterfn
H

Definition 3.2. (Hiding of high level actions)
Let T = (Q,Σ, E , I,X) be a timed automaton over an alphabetΣ = H ∪ L where
H∩L = ∅. We denote byT\H an automaton obtained fromT by substituting syntac-
tically every edge(q, ψ, σ, γ, q′) ∈ E such thatσ ∈ H with the edge(q, ψ, ǫ, γ, q′).

Thus,T\L behaves asT but all the high level actions are substituted by the silent
actionǫ, thus their occurrence is not visible in the trace semantics.

Consider, now, the automatonInterfnH in Figure 1, where an arc having as label
a set of action represents a set of edges, one for each action in the set (L orH), with
the same clock constraint and clock reset. This automaton allows the execution of
high-level actions only when they are separated by at leastn time units.

Given a timed automatonT , the synchronized product ofT with InterfnH , T ‖
InterfnH , allows to observe the set of all behaviors ofT such that high-level actions
occur at times separated by an interval whose length is greater than, or equal ton. Of
course, we are assuming thatT does not reset the clockx interf.

Definition 3.3. (n-non-interference)
Let≡ be an arbitrary equivalence relation between timed automata.
Let T = (Q,Σ, E , I,X) be a timed automaton with an alphabetΣ = H ∪ L where
H ∩ L = ∅. T is n-non-interferingiff

T |L ≡ (T ‖ InterfnH)\H

Thus,T is n-non-interfering iff its low behaviors do not change, with respect to
the given equivalence, whenever either high level actions are not performed or they
are performed with a delay of at leastn time units between them and then they are
hidden.

Proposition 3.1. Let T be a timed automaton andn ∈ IN . If T is n-non-interfering
thenT is also(n+ 1)-non-interfering.

Proof:
It is simple to see that the condition ofn-non-interference depends on the frequency

Barbuti and Tesei / A Decidable Notion of Timed Non-Interference 7

of the occurrence of high-level actions. More precisely, itcan be missed only if such
a frequency is too high. Thus, if the condition holds for a certain n it will hold for
everyn′ ≥ n because then′-non-interference requires the same equivalence allowing
at most a lower frequency of high-level actions than then-non-interference, which is
verified by hypothesis. ⊓⊔

Definition 3.4. (n-trace-non-interference)
Let T = (Q,Σ, E , I,X) be a timed automaton with an alphabetΣ = H ∪ L, where
H ∩ L = ∅, and letn be a natural number.T is n-trace-non-interferingiff the set of
runs ofT |L is equal to the set of runs of(T ‖ InterfnH)\H.

This notion is natural for timed automata, but suffers of a negative decidability
result for trace equivalence of timed automata (see [4]).

Now, we introduce an equivalence which is decidable and can be used to define a
different notion ofn-non-interference. This equivalence focuses the reachable states
of the system. The decidability of the new notion relies on the decidability of the
reachability test for timed automata [4]. This test is one ofthe most used ways of
verification of properties of a timed automaton and all the tools managing timed
automata implement it efficiently.

Definition 3.5. (n-state-non-interference)
Let T = (Q,Σ, E , I,X) be a timed automaton with an alphabetΣ = H ∪ L, where
H ∩ L = ∅, and letn be a natural number.T is n-state-non-interferingiff the set of
reachable states ofT |L is equal to the set of reachable states of(T ‖ InterfnH)\H,
projected on the states ofT .

LetR be the set of reachable states ofT |L. Since this automaton can not perform
high level actions,R contains that states ofT that can be accessed without the aid
of any high level activity. The notion ofn-state-non-interference then requires that
R does not change when a controlled high-level activity is allowed. This control
imposes that any two subsequent high level actions are separated by at leastn time
units.

The following proposition shows that the two notions of non-interference take
into account of different aspects of systems.

Proposition 3.2. Let T be a timed automaton.T is n-trace-non-interfering6⇒ T is
n-state-non-interfering.T is n-state-non-interfering6⇒ T is n-trace-non-interfering.

Proof:
Let we show two counter examples. Figure 2 shows an automatonwhich isn-trace-
non-interfering for alln ∈ IN . This is because the high level transition labeled
with h from state0 to state2 is followed, possibly without delay, by a transition
labeled with the low level actionl from state2 to state1. Thus, when the automaton
T |L is considered, the actionh can not be performed and the runs are of the form

8 Barbuti and Tesei / A Decidable Notion of Timed Non-Interference

2

true, h, {}

true, l, {}

true, l, {}

0 1

true, l, {}

Figure 2. A system that isn-trace-non-interfering, but notn-state-non-interfering

10

true, h, {}

true, l_1, {}

true, l_2, {}

Figure 3. A system that isn-state-non-interfering, but notn-trace-non-interfering

(l, t0)(l, t1) · · · in which it is only required thatti ≤ ti+1. When the automaton
(T ‖ InterfnH)\H is considered, the actionh can be performed, but is not observable.
Thus the runs are of the same form of those ofT |L because there are not clock
constraints. On the other hand, the systemT of Figure 2 is notn-state-non-interfering
for anyn ∈ IN . This is because the state2 is reachable in(T ‖ InterfnH)\H for all
n ∈ IN and it is not reachable inT |L.

Figure 3 shows the counterexample for the converse. In this case it is clear that
the automaton isn-state-non-interference. On the other hand, all the runs ofT |L
begin with(l0, t0) · · · , but the automaton(T ‖ InterfnH)\H has a run beginning with
(l1, t0) · · · . ⊓⊔

4. An example of timed non-interference

In this section we show the utility of non-interference analysis to state the robust-
ness, with respect to external attacks, of a classical timing-based mutual exclusion
protocol.

4.1. The Fischer Protocol for Mutual Exclusion

The protocol was suggested by Michael Fischer and reported in [16]. The signifi-
cance of the protocol is due to its speed, that makes it suitable for multiprocessor

Barbuti and Tesei / A Decidable Notion of Timed Non-Interference 9

computers or time-critical embedded systems.
Suppose that two processes,P1 andP2, are running in parallel, competing for a

critical section, and assume that atomic reads and writes are permitted to a shared
variablex. Assume also that every access to the shared memory containing x takes
acc units of time. Each process executes the following algorithm, where the code
both of the critical section and the one outside the protocolis assumed not to modify
x.

repeat

await x=0;

x:=i;

delay b

until x=i;

Critical Section;

x:=0

Each processPi is allowed to be in its critical section iffx = i. The statement
await x=0 waits until the value ofx becomes0. The statementdelay b delays a
process forb time units, as measured by the process clock. Here we assume that the
local clocks of the two processes proceed at the same rate. Each statement takes an
amount of time to be executed, in particular we assume that the assignment statement
takes at mosta time units. Recall that an access to the shared memory containing x
is atomic, and the processesP1 andP2 can compete for accessing it, thus the time of
each assignment,a, may depend on the resolution of conflicts.

The Fisher’s protocol ensures mutual exclusion iffa < b.
Each process can be represented by a timed automaton like theone in Figure 4, a

slightly different representation of the one given in [6, 7].
State0 corresponds to the local computation of the process.x is not a clock

variable: it represents the shared variable of the protocol. y is a clock variable that is
used to count time as specified in the protocol specification.The process can start the
protocol for accessing the critical section only if the value ofx is equal to0. This is
represented by the(x = 0)Pi

action: a synchronization action with the serializer (see
Figure 5). At this point (state1) it can assignx (in a time shorter thanb1) and it waits
b time units for testing it, and, depending on its value, for entering the critical region
(statecritical). On exiting the critical section, the process sets the value ofx to 0.

It is important to note thatP1 andP2 must not synchronize on actions, but only
on the value of variablex. Thus the same action executed by a process is considered
different if executed by another process; for instance (x:=0)P1

, executed byP1, is
different from (x:=0)P2

, executed byP2.

1Actually the assignment has to occur withina time units anda has to be less thanb. Here, for simplic-
ity, we useb in both cases.

10 Barbuti and Tesei / A Decidable Notion of Timed Non-Interference

Pi
y=b, (x<>i) ,{}

Pi
(x=i) ,

Pi
true, (x=0) , {y}

Pi
(x:=0) ,

Pi

0 1 2

critical

{y}

y=b,

y>0, outCS, {y} y=0, inCS, {}

{}

y=0,

34

y<b, (x:=i) , {y}

Figure 4. AutomatonPi

The automaton of Figure 4 does not consider the time,acc, for accessing the
shared memory. Thus, whenP1 andP2 are combined in parallel they can both start
an access tox, and the time interval between these accesses could be shorter then
acc. This is in contrast with the assumption that accesses tox are atomic.

To force the accesses to be atomic and to control the value of the variablex, we
add, to the system composed by the two processes, the serializer of Figure 5 which
synchronizes withP1 andP2 on every action which performs an access tox. The
clock y is used to ensure that every access on the variablex (test and/or assignment)
is performed after at leastacc time units since the last one. This assures atomicity.
Note that the states of the automaton of Figure 5 are associated with the three possible
values of variablex. The actions(x <> i)Pi

and(x = i)Pi
correspond to the test

of x 6= i or x = i respectively. They can be taken by the processPi only if the test
is true, according to the information on the value ofx held in the current state of the
serializer.

Let us analyze the behavior of the two processes,P1 andP2. The automaton
(P1 ‖ P2 ‖ serializer), obtained by the synchronized product of the components, can
reach any possible state〈s1, s2, s〉 (wheres1 ands2 are states ofP1 andP2, ands is a
state of the serializer) but the states〈critical, critical, s〉, because of the correctness
of the mutual exclusion protocol.

Let us assume now that there is a upper bound,ucs, on the time needed to execute
the critical section after the variablex is checked. This assumption is reasonable
when the operations in the critical section are fast and simple, for example the ones
for updating a counter. Ifucs ≤ a+ b, the previous protocol can be modified in order
to decrease the delay in accessing the critical section whena conflict is present. The

Barbuti and Tesei / A Decidable Notion of Timed Non-Interference 11

<x=1>

<x=2>

<x=0>

P1
 (x:=1) ,

P
2

(x:=2) ,

Pi
 (x:=0) ,

Pi
 (x=0) ,

Pi
 (x:=0) ,

Pi
 (x:=0) ,

P
2

(x:=2) ,
P1

 (x:=1) ,

P1
(x=1) ,

P
2

(x<>2) ,

P1
(x<>1) ,

P
2

(x=2) ,

y>=acc,

{y}

y>=acc,

{y}

{y}

y>=acc,

y>=acc,

{y}

y>=acc,

{y}

y>=acc,

{y}

{y}

y>=acc, y>=acc,

{y}

{y}y>=acc,

y>=acc,

{y}

{y}

y>=acc,

y>=acc, {y}

Figure 5. The serializer

idea is that, becauseucs ≤ a+b, after executing successfully the protocol and before
entering the critical section, a process can signal to the other that the protocol can be
executed again. This is safe because the time for executing the critical section is less
than or equal to the time taken by the protocol itself. Actually ucs includes the time
for assigning the value0 to x.

The new protocol is now the following.

repeat

await x=0;

x:=i;

delay b

until x=i;

x:=0

Critical Section;

Let us represent processP ′
i executing the new protocol by the timed automaton

of Figure 6.

12 Barbuti and Tesei / A Decidable Notion of Timed Non-Interference

Pi
y=b, (x<>i) ,{}

Pi
(x=i) ,

Pi
true, (x=0) , {y}

Pi
(x:=0) ,

Pi

0 1 2

y=b,

3
true, {y}

4critical

{}

0 < y <= ucs,
outCS,
{}

y=0, inCS, {}

y<b, (x:=i) , {y}

Figure 6. AutomatonP ′

i

4.2. Timed Non-Interference

Suppose the existence of an intruder which is able to read andwrite the shared vari-
ablex. Such an intruder can be either a malicious host connected tothe network, or
simply another component of the system accessing the sharedmemory for other pur-
poses. The possible behaviors of the intruder are describedby the timed automaton
in Figure 72. Note that to implement atomic accesses tox the serializer must be ex-
tended for taking account also of the actions of the intruder. The modified serializer
is denoted byserializer′.

0

(x:=0)

(x:=1)

(x:=2)

att

att

att

true,
{}

true,

{}

true,{}

Figure 7. The intruder

2Actually only writing actions are critical, thus we restrict the system to them.

Barbuti and Tesei / A Decidable Notion of Timed Non-Interference 13

Consider now the automatonT = (P ′
1 ‖ P

′
2 ‖ serializer′ ‖ intruder)

In order to apply Definition 3.5 we consider the actions of theintruder as the high
level actions, thusH = {(x := 0)att, (x := 1)att, (x := 2)att}.

We want to show thatT is n-state-non-interfering, for somen. This corresponds
to show that the set of reachable states of the system(P ′

1 ‖ P ′
2 ‖ serializer′ ‖

intruder ‖ InterfnH)\H, projected on the states of(P ′
1 ‖ P ′

2 ‖ serializer′ ‖ intruder),
is equal to the set of reachable states of the system in which all the actions of the in-
truder are forbidden. We know, by the previous analysis of the system without the
intruder, that the states〈critical, critical, s〉 (wheres is any state of the serializer)
are not reachable. Thus, in this example, the condition of Definition 3.5 reduces to
verify that the states〈critical, critical, s, 0〉 of (P ′

1 ‖ P ′
2 ‖ serializer′ ‖ intruder ‖

InterfnH)\H (projected on the states of(P ′
1 ‖ P ′

2 ‖ serializer′ ‖ intruder)) are still
unreachable.

Remark that the original Fischer protocol was very weak fromthis point. If the
intruder set the variablex to0when a process is in its critical region, the other process
is enabled to enter the critical region too.

First let us show that if the value ofn is lower enough the system can ben-state-
interfering, as showed in Figure 8, whereacc = 1, b = 6, ucs = 6 andn = 2. Each
depicted interval corresponds toacc time units.

P’2

P’1

x:=1 x:=2

x=0

x=0 x:=1

x:=2

x=1

x=2

inCs

x:=0

inCs

x:=0

crash

crash

Intruder

Figure 8. An attack to the protocol

Observing the attack to the protocol reported in Figure 8 we get some hints to
obtain a general result. Ifucs ≤ a+ b anda < b (these are the conditions needed by
the protocol for its correctness in absence of attacks), we can conclude the following.

Proposition 4.1. For all n > b the system(P ′
1 ‖ P ′

2 ‖ serializer′ ‖ intruder) is
n-state-non-interfering.

Proof:
Note that, in order to break the protocol, the intruder, whenpresent, has to perform
two successive assignments tox (i.e. two subsequent high level actions in our for-
mulation) in a limited time interval. To see this, suppose that bothP ′

1 andP ′
2 start a

session of the protocol and they have reached their states2. Suppose, at this point,
thatx = 2. This means that the first process that started the session was P ′

1. The

14 Barbuti and Tesei / A Decidable Notion of Timed Non-Interference

normal behavior at this point would be thatP ′
1, seeingx = 2, returns to its idle state

(state1). But suppose that, here, the attacker setsx := 1 afterP ′
2 entered its state

2 and reset its clocky (yP ′

2
). Now, the session proceeds andP ′

1, when its clocky
equalsb, enter its state3 because the attacker has setx to 1. For now onP ′

1 pro-
ceeds without any further control toward the critical section. Let us return toP ′

2. It
was waitingb time units before testing the value ofx and deciding whether enter the
critical section or not. Now the attacker has to setx := 2 beforeP ′

2 test the value
(whenyP ′

2
equalsb) because currentlyx equals1. The attacker, to break the protocol,

should be allowed to do such an assignment. Surely it is not allowed ifn > b because
the clockx interf (the clock ofInterfnH constraining the occurrence of high level
actions) was reset after clockyP ′

2
was reset. Thusx interf is less thenyP ′

2
. To do

the assignment (an high level action)x interf must be greater than or equal ton
and to break the protocol the assignment has to be done beforeyP ′

2
equalsb. That is,

it must holdx interf < yP ′

2
< b andx interf ≥ n. This is not possible ifn > b.

The previous argumentation does not assume anything about the value ofb. Thus,
if n > b, the set of reachable states of the system when the intruder acts with the
constraints expressed byInterfnH is equal to the set of reachable states of the system
when the intruder does not perform any action. ⊓⊔

Concluding, byn-state-non-interference analysis, we are able to obtain anupper-
bound on the frequency of attacks to the protocol under whichit is not affected by
the attack.

5. Concluding remarks

In this paper we have defined, using a timed automata based approach, a notion of
timed non-interference suitable to capture systems free ofinterference due to high
frequency of certain actions. Then, we have showed an example of timed non-
interference analysis.

Note thatn-state-non-interference does not guarantee that the intruder could not
interfere in another manner, for instance causing a deadlock or forbidding a process to
reach the critical section all of the times. These other attacks do not strongly depend
on the frequency of the action of the intruder and should be addressed using different
methods.

References

[1] Aceto, L., Bouyer, P., Burgueño, A. and Guldstrand Larsen, K. (1998) The Power of
Reachability Testing for Timed Automata. In Proceedings ofFoundations Software
Technology and Theoretical Computer Science, Springer LNCS 1530, 245–256.

Barbuti and Tesei / A Decidable Notion of Timed Non-Interference 15

[2] Aceto, L., Burgueño, A. and Guldstrand Larsen, K. (1998) Model Checking via Reach-
ability Testing for Timed Automata. In Proceedings of TACAS’98, Springer LNCS
1384, 263–280.

[3] Alur, R., Courcoubetis, C. and Dill, D.L. (1993) Model-Checking in Dense Real-time.
Information and Computation, 104, 2–34.

[4] Alur, R. and Dill, D.L. (1994) A Theory of Timed Automata.Theoretical Computer
Science, 126, 183–235.

[5] Alur, R. and Henzinger, T.A. (1994) A Really Temporal Logic. Journal of ACM, 41,
181–204.

[6] Abdulla, P.A. and Jonsson, B. (1998) Networks of timed processes. In Proceedings of
TACAS’98, Springer LNCS 1384, 298-312.

[7] Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X.,
Olivero, A., Sifakis, J. and Yovine, S. (1995) The Algorithmic Analysis of Hybrid
Systems.Theoretical Computer Science, 138, 3–34.

[8] Barbuti, R., De Francesco, N., Santone, A. and Tesei, L. ANotion of non-Interference
for Timed Automata (2001) In Proceedings of Concurrency, Specification and Program-
ming Workshop (CS&P’2001), (L. Czaja ed.), Warsaw, Poland,October 2001.

[9] Dhem, J-F., Koeune, F., Leroux, P-A., Mestr, P., Quisquater, J-J. and Willems, J-L.
(2000) A Practical Implementation of the Timing Attack. In Proceedings of CARDIS
1998, Springer LNCS 1820, 167–182.

[10] Focardi, R. and Gorrieri, R. (1996) Automatic Compositional Verification of Some
Security Properties. In Proceedings of TACAS’96, SpringerLNCS 1055, 167–186.

[11] Focardi, R. and Gorrieri, R. (1997) The Compositional Security Checker: A Tool for the
Verification of Information Flow Security Properties.IEEE Transactions on Software
Engineering, 23(9), 550–571.

[12] Focardi, R., Gorrieri, R. and Martinelli, F. (2000) Information Flow in a Discrete Time
Process Algebra. In Proceedings of 13th IEEE Computer Security Foundations Work-
shop (CSFW’00), (P. Syverson ed.), IEEE press, Cambridge, England, July 2000.

[13] Henzinger, T.A. and Kopke, P.W. (1994) Verification Methods for the Divergent Runs of
Clock Systems. In Proceedings of Formal Techniques in Real-Time and Fault-Tolerant
Systems, Springer LNCS 863, 351–372.

[14] Henzinger, T.A., Nicollin, X., Sifakis, J. and Yovine,S. (1994) Symbolic Model Check-
ing for Real-Time Systems.Information and Computation, 111, 193–244.

[15] Kocher, P.C. (1996) Timing Attacks on Implementationsof Diffie-Hellman, RSA, DSS,
and Other Systems. In proceedings of CRYPTO 1996, Springer LNCS 1109, 104–113.

[16] Lamport, L. (1987) A Fast Mutual Exclusion Algorithm.ACM TOPLAS, 5, 1–11.

[17] P. Y. A. Ryan, S. A. Schneider. (2001) Process Algebra and Non-Interference.Journal
of Computer Security, 9(1/2), 75-103.

[18] A.W. Roscoe, J.C.P. Woodcock, L. Wulf. (1996) Non-Interference Through Determin-
ism. Journal of Computer Security, 4(1).

16 Barbuti and Tesei / A Decidable Notion of Timed Non-Interference

[19] Schindler, W. (2000) A Timing Attack against RSA with the Chinese Remainder The-
orem. In Proceedings of CHES 2000, Springer LNCS 1965, 109–124.

[20] Yovine, S. (1996) Model Checking Timed Automata. Lectures on Embedded Systems,
Springer LNCS 1494, 114–152.

