
Acta Informatica manuscript No.
(will be inserted by the editor)

Timed Automata with Urgent Transitions?

Roberto Barbuti, Luca Tesei

Dipartimento di Informatica - Università di Pisa,
via F. Buonarroti, 2 56127 Pisa - Italy,
e-mail: {barbuti,tesei}@di.unipi.it

The date of receipt and acceptance will be inserted by the editor

Abstract. In this paper we propose an extension to the formalism of
timed automata by allowing urgent transitions. An urgent transition
is a transition which must be taken within a fixed time interval from
its enabling time and it has higher priority than other non-urgent
transitions enabled in the same state. We give a set of rules formally
describing the behavior of urgent transitions and we show that, from
a language theoretic point of view, the addition of urgency does not
improve the expressive power of timed automata. From a specifica-
tion point of view, the use of urgent transitions allows shorter and
clear specifications of behaviors involving urgency and priority. We
use timed automata with urgent transitions for specifying a multicast
protocol for mobile computing.

Keywords: real-time systems, timed automata, modular specifica-
tion, parallel composition.

1 Introduction

Timed automata are widely recognized as a standard model for de-
scribing systems in which the time plays a fundamental role [7,8].
Since their introduction, timed automata have been widely studied
from different points of view [5,6,9,10], in particular for their possible
use in the verification of real-time systems [1,2,4,11,27,28,31].

? A first version of this paper appeared in [15]

2 Roberto Barbuti, Luca Tesei

Usually the expressiveness of timed automata is given in terms of
accepted timed languages, but, because of their use as a specification
formalism, also the ease to describe real-time systems must be taken
into account. For this purpose many extensions to the basic model
have been proposed (see for example [14,23,24,26,29]). All these ex-
tensions have been discussed with respect to the expressiveness of the
original model.

In this paper we present a further extension: timed automata with
urgent transitions. The notion of urgency in timed systems was al-
ready introduced in [18,20,19], where the urgency of transitions out-
going from a state is induced by a time progress condition associated
to the state and derived from deadlines associated to the transitions.
The semantics imposes the impossibility to stay in the state if the
condition is not satisfied while the time elapses. In this paper we
consider a slightly different notion of urgency. Urgent transitions are
transitions which must be performed within a given time interval
starting from their enabling and, in this situation, have priority upon
non-urgent transitions.

From the expressiveness point of view, both our approach and the
one of [18,20,19] are suitable for specifying timed systems. The lat-
ter allows, in some cases, more general urgency conditions, while, in
other cases, such as “as soon as possible” transitions, our approach
allows more general time constraints. Moreover, the semantic setting
is different. In op. cit. the behaviors of a timed automaton are all pos-
sible derivations of the semantic transition system in which the time
progress conditions are kept satisfied. In this paper we adopt a model
of behavior in which conditions in the states are not used and some
behaviors of the semantic transition system are discarded according
to the Büchi acceptance condition for timed automata (see Section 2).
Section 8 contains a more detailed discussion on the differences of the
two approaches.

We show that, from the language theoretic point of view, timed
automata and timed automata with urgent transitions are equivalent.
This is proved by defining a transformation from a timed automaton
with urgent transitions to a timed automaton which accepts the same
language.

From a specification point of view, urgent transitions provide an
easy and effective way to express some important types of behaviors
of real time systems, which, otherwise, should be simulated using
complex constructions. These usually yield a difficult to understand
specification and increase the probability of mistakes.

Timed Automata with Urgent Transitions 3

The notions of priority and urgency captured by our definitions
are inherently non-compositional and, hence, the transformation is
not a congruence with respect to parallel composition. Thus, in the
specification task, one has to design components considering that the
urgency of their actions can be affected and/or enhanced by other
components and by the synchronization mechanism of the parallel
composition. This aspect is explained in Sections 5 and 6. The latter
contains an example of specification of a multicast protocol for mo-
bile computing, which is used to illustrate the possible use and the
features of timed automata with urgent transitions. Finally, Section
7 contains some remarks and suggestions for an effective use of timed
automata with urgent transitions in the verification of systems.

2 Timed automata

We recall the definition of timed automata [8]. In the following, R
is the set of real numbers, R≥0 the set of non-negative real numbers
and R+ is the set of positive real-numbers. Q is the set of rational
numbers and Q+ is the set of positive rational numbers. A clock takes
values fromR≥0. Given a set X of clocks, a clock valuation over X is a
function that assigns a non-negative real number to every clock. The
set of valuations of X , denoted VX , is the set of total functions from
X to R≥0. Given ν ∈ VX and δ ∈ R≥0, we use ν + δ (resp. ν − δ) to
denote the valuation that maps each clock x ∈ X into ν(x) + δ (resp.
ν(x) − δ). Note that if there exists x ∈ X such that ν(x) − δ < 0,
ν − δ is not a clock valuation.

Given a set X of clocks, a reset γ is a subset of X . The set of all
resets of X is denoted by ΓX . Given a valuation ν ∈ VX and a reset
γ, with ν\γ we denote the valuation

ν\γ(x) =

0 if x ∈ γ
ν(x) if x 6∈ γ

Given a set X of clocks, the set ΨX of clock constraints over X are
defined by the following grammar:

ψ ::= true | false | ψ ∧ ψ | x # t

where x ∈ X , t ∈ N is a natural number, and # is a binary
operator in {<,>,≤,≥,=}. Note that the negation operator is not
needed because the negation of an atomic constraint x#t (# different
from =) can be expressed as another constraint of the same kind. The
negation of a constraint x = t is the disjunction of x < t and x > t.

4 Roberto Barbuti, Luca Tesei

This disjunction can be simulated, as usual, by the non-deterministic
choice.

Clock constraints are evaluated over clock valuations. The satis-
faction by a valuation ν ∈ VX of the clock constraint ψ ∈ ΨX , denoted
ν |= ψ, is defined as follows:

ν |= true
ν 6|= false
ν |= ψ1 ∧ ψ2 iff ν |= ψ1 and ν |= ψ2

ν |= x#t iff ν(x)#t

Definition 1 (Timed automaton). A timed automaton T is a tu-
ple (Q,Σ, E , I, R,X), where: Q is a finite set of states, Σ is a finite
alphabet of actions, E is a finite set of edges, I ⊆ Q is the set of
initial states, R ⊆ Q is the set of repeated states, X is a finite set of
clocks. Each edge e ∈ E is a tuple in Q× ΨX × ΓX ×Σ ×Q.

If e = (q, ψ, γ, σ, q′) is an edge, q is the source, q′ is the target, ψ
is the constraint, σ is the label, γ is the reset.

The semantics of a timed automaton T is given in terms of its
accepted timed language. The definition of such a language is based
on an infinite transition system S(T) = (S,→), where S is a set of
states and→ is the transition relation. The states S of S(T) are pairs
(q, ν), where q ∈ Q is a state of T , and ν is a valuation. An initial
state of S(T) is a state (q, ν), where q ∈ I is an initial state of T and
ν is the valuation which assigns 0 to every clock in X . At any state
q, given a valuation ν, T can stay idle or it can perform an action
labeling an outgoing edge e. If T stays idle, a transition is possible to
a state of S(T) where the state of T is the same, but the valuation
has been modified according to the elapsed time. If T moves along
an outgoing edge e = (q, ψ, γ, σ, q′), this corresponds to a transition,
labeled by σ, of S(T) from the state (q, ν) to the state q′, ν\γ. This
transition is possible only if the current clock valuation respects the
constraint ψ of e. The rules to derive the transitions of S(T) are the
following:

1.
δ ∈ R+

(q, ν)
δ−→(q, ν + δ) 2.

(q, ψ, γ, σ, q′) ∈ E , ν |= ψ

(q, ν)
σ−→(q′, ν\γ)

Rule 1. represents the case in which T stays idle in a state and
the time passes, while Rule 2. corresponds to the occurrence of an
action.

Timed Automata with Urgent Transitions 5

Definition 2 (Action sequence, Run). Let T = (Q,Σ, E , I, R,X)

be a timed automaton and let r = s0
l0−→ s1

l1−→ . . . be an infinite
derivation of the transition system S(T):

- The time sequence tj of the time elapsed from state s0 to state sj
in r is defined as follows:

t0 = 0

ti+1 = ti +

0 if li ∈ Σ
li otherwise

- The event sequence of r is the sequence of the events occurred
during r including the elapsed times: (l0, t0)(l1, t1) . . .

- The action sequence of r is the projection of the event sequence of
r on the pairs {(l, t) | l ∈ Σ}

- The state sequence of r is the projection of the sequence s0s1s2 · · ·
on the states {qi ∈ Q | si = (qi, νi), i = 0 ∨ (i ≥ 1 ∧ li−1 ∈ Σ)}.

- We say that r is a run of T if it satisfies the Büchi acceptance
condition: there exists a state q ∈ R such that q occurs infinitely
many times along the state sequence of r.

The Büchi acceptance condition discards all the finite runs and
expresses a constraint on the infinite sequence of states taken by the
automaton by edges in E . Thus, an infinite derivation may exist which
is not a run of the automaton because it violates the Büchi condition.
For instance, a derivation whose state sequence ends with an infinite
sequence of the same state q (obtained, say, by a self-loop transition
in the state q of the timed automaton) is not considered as a run if q
does not belong to R.

Definition 3 (Timed Word, Timed Language). Let Σ be an al-
phabet. A timed word over Σ is an infinite sequence of pairs
(σ0, t0)(σ1, t1) . . . such that σi ∈ Σ, and ti ∈ R≥0 and ti ≤ ti+1, for
all i ∈ IN .

A timed language over Σ is a subset of the set of all timed words
over Σ.

Definition 4 (Acceptance). Given a timed automaton
T = (Q,Σ, E , I, R,X), a timed word w over Σ is accepted by T if a
run r of T exists such that w = v, where v is the action sequence of r.
The set of timed words accepted by T is called the accepted language
of T and it is denoted by L(T).

A synchronized product is defined on timed transition tables, that
is to say, timed automata without the set of repeated states. A timed

6 Roberto Barbuti, Luca Tesei

transition table of a certain timed automaton T can be considered
an automaton that accept the action sequences of all infinite deriva-
tions of the transition system S(T) defining the semantics of T . A
subset of such set of action sequences is L(T), according to the Büchi
acceptance condition.

Definition 5 (Timed transition table). Let T = (Q,Σ, E , I, R,X)

be a timed automaton. The timed transition table of T is denoted T̂
and it is the tuple (Q,Σ, E , I,X).

Definition 6 (Product). Let T1 = (Q1, Σ1, E1, I1, R1,X1) and
T2 = (Q2, Σ2, E2, I2, R2,X2) be two timed automata with X1∩X2 = ∅.
The product of the timed transition table of T1 and of T2, denoted by
T̂1 ‖ T̂2, is given as follows:

T̂1 ‖ T̂2 = 〈Q1 ×Q2, Σ1 ∪Σ2, E , I1 × I2,X1 ∪ X2〉

where E is defined by:

1. Synchronization actions
∀σ ∈ Σ1 ∩Σ2,∀(q1, ψ1, γ1, σ, q

′
1) ∈ E1,∀(q2, ψ2, γ2, σ, q

′
2) ∈ E2

E contains ((q1, q2), ψ1 ∧ ψ2, γ1 ∪ γ2, σ, (q′1, q′2))
2. T1 actions
∀σ ∈ Σ1\Σ2, ∀(q, ψ, γ, σ, q′) ∈ E1, ∀s ∈ Q2

E contains ((q, s), ψ, γ, σ, (q′, s))
3. T2 actions
∀σ ∈ Σ2\Σ1, ∀(q, ψ, γ, σ, q′) ∈ E2, ∀s ∈ Q1

E contains ((s, q), ψ, γ, σ, (s, q′))

This definition shows what we expect in parallel behaviors:

– Common symbols of the alphabets are synchronization actions.
A synchronization action can be executed if and only if all the
component automata involved can execute it. The action must be
executed synchronously by all of them.

– Other symbols can be executed by each component independently
according to its original specification.

The product of timed transition tables is a simplification of the
definition of the parallel composition between timed automata. This
parallel composition operation requires that in every run r of the
obtained automaton, the projection of the states of r on each compo-
nent j results in a sequence of states that represents a run of the j-th
automaton. Thus, the parallel composition automaton has to be de-
fined such that an infinite action sequence is a run if and only all the

Timed Automata with Urgent Transitions 7

correspondent action sequences of the components satisfy the Büchi
acceptance condition according to their sets of repeated states.

This can be done, as in [8], by adding a component at each state
of the product automaton. This new component behaves as a counter
that keeps track of which components entered one of their repeated
states. Consider the automata T1 and T2 of the previous definition.
The set of states of their parallel composition is Q1 ×Q2 × {0, 1, 2}.
Initially the counter is 0. If the first component enter a state belonging
to R1 by a transition, the new state have the third component equal
to 1. Then, when the second component will enter a state belonging to
R2 the new state will have the counter at 2. The subsequent transition
reset the counter to 0. The set of repeated states of the composed
automaton is R1 × R2 × {2}. In this way if the composition has a
run with Büchi acceptance condition, this is true, by construction,
also for the two components. Conversely, again by construction, if
the components have a run with Büchi acceptance condition, the
resulting run of the automaton satisfies the Büchi condition. For the
details see [8].

3 Timed automata with urgent transitions

In this section we extend the model of timed automata with a new
feature which is useful in the specification of real-time systems. The
idea is to provide, in each state of the automaton, the possibility
of labeling some outgoing edges as urgent. Intuitively an urgent la-
beled edge must be taken with higher priority with respect to the
non-urgent ones and it must be taken within a certain time interval
starting from its enabling.

Let q be a state of a timed automaton and let e be an outgoing
transition from q. We use 〈bse, bee〉 to denote the time interval in which
the transition e is enabled, according to its constraint, in the state q
during a derivation of the semantic transition system of the automa-
ton. Note that such an interval is represented by its bounds, bse and
bee, which can be closed or open; that is bse ∈ {(t, [t} and bee ∈ {t), t]},
where t is, in general, a non-negative rational value.

Let ` ∈ Q+ be a fixed parameter associated to the timed automa-
ton. Let tq be the time instant in which the state q is entered. Suppose
e is an urgent transition. The time interval in which e must be taken
starts at time bse, but if the constraint of e is already satisfied when
q is entered then the interval starts at time tq. The interval stops `
time units after its start. However, if the constraints of e becomes
false before, the interval stops at instant bee. Figure 1 shows three

8 Roberto Barbuti, Luca Tesei

cases. The point-filled areas are the intervals in which e is enabled.
The oblique-line-filled areas are the intervals in which e is enabled
but not executable. The case (a) is the basic case in which the in-
terval has length `, starts at the enabling time of e and stops after
` time units while e is still enabled. Case (b) shows the situation in
which e becomes disabled before ` time units elapsed and the interval
is shorter than `. In case (c) the transition is already enabled when
the state is entered: the interval starts at tq and its length is `.

Fig. 1 The semantics of urgency

This notion of urgency allows us to define precisely the behavior of
urgent actions. The intuitive idea “urgent transitions must be taken
as soon as possible” introduces some problems when applied in a
model with a dense time domain. To see this, consider a state of a
timed automaton in which the current value of clock x is in [0, 1]
and there is an outgoing urgent transition with a clock constraint
x > 1. Letting the time to elapse, at which time should the urgent
transition be executed? It is not possible to answer precisely this
question since the time domain is dense. To avoid this problem we
introduce the constant ` and the interval within the action must be
executed. Adopting this solution, the problem does not arise and the
semantics of urgency is clear in all cases.

To complete the specification of the proposed notion of urgency we
have to specify the nature of the bounds of the interval. The choice is
arbitrary in principle, but the following seems to be the most natural.
If the left bound of the interval is open, then we set the right bound
closed, i.e. for the urgent action with constraint x > 1 of the example
above, the interval in which such an action must be taken is that in
which x ∈ (1, 1+`]. Conversely, if the left bound is closed then we set

Timed Automata with Urgent Transitions 9

the right bound open. For instance, if the transition has a constraint
of the form of x ≥ 1, instead of x > 1, then the interval in which
it must be taken is that in which x ∈ [1, 1 + `). When the state is
entered and the urgent transition is already satisfied, the left bound
of the interval is considered closed. In this way the interval is always
well defined.

The denseness also imposes that the constant ` be greater than
0. The choice ` = 0 could be interpreted as “immediately”, but this
leads, in some cases, to the problem discussed above. However, since
` ∈ Q+, it can be chosen as small as needed. In other words, the “as
soon as possible” limit behavior can be approximated with arbitrary
precision.

Note that the parameter ` can be local to each urgent transition,
but for the sake of simplicity we discuss the case in which ` is a global
parameter. The case of local specification can be caught by a slight
modification of the definition, the semantics and the transformation.

When a state q has a set Uq of outgoing urgent transitions, they
are treated as follows. Let bs be the lower bound of the first interval, in
the state, in which some urgent transition becomes enabled. Let Sq =
{u1, u2, . . . , uk} be the set of urgent transitions which become enabled
after bs and let Iui = 〈bsui , b

e
ui〉, i = 1, . . . , k be their enabling time

intervals. The time interval in which at least one urgent transition
must be taken is 〈bs, min bound(bs+`, beu1 , . . . , b

e
uk

)〉, where min bound

gives the more restrictive interval upper bound. In this interval all
enabled urgent transitions have the same priority and one of them is
executed non-deterministically. Figure 2 shows two possible scenarios.
The white area gives the interval in which at least an urgent transition
must be taken. In (a) u1 is the first enabled transition. u2 has the
minimal upper bound, thus the interval in which one urgent transition
must be taken starts with bsu1 and ends with beu2 . In this interval one
of u1, u2 and u3 (in the sub-interval in which it is enabled) can be
taken. In (b), the first urgent transition enabled is u1 and it remains
enabled also after ` time units. Thus, in this case, the interval to
consider has length ` because the other ones are still enabled. Within
this interval u2 and u3 can be taken, when enabled, as well.

If a state has no urgent outgoing edges then the behavior is the
usual one of timed automata. This also happens when a state is en-
tered and no urgent transitions are enabled.

Moreover, when some urgent transition is enabled in a state, the
unique way to continue the run is to execute it or another urgent
transition following the rules expressed above.

10 Roberto Barbuti, Luca Tesei

Fig. 2 The case of more than one urgent transitions overlapping

Definition 7 (Timed Automaton with Urgent Transitions).
Let ` ∈ Q+ be a constant. A timed automaton with urgent transitions
T `u is a tuple (Q,Σ, E ,U , I, R,X) where Q is a finite set of states, Σ
is a finite alphabet of actions, E and U are finite sets of edges, the
non-urgent and the urgent ones, I ⊆ Q is the set of initial states,
R ⊆ Q is the set of repeated states, X is a finite set of clocks. Each
edge e ∈ E ∪ U is a tuple in Q× ΨX × ΓX ×Σ ×Q.

The class of all timed automata with urgent transitions will be
denoted by T `u .

In the following the superscript ` could be omitted and, when this
happens, it should be considered implicitly defined.

The semantics of a timed automaton with urgent transitions T `u
is defined, as for timed automata, in terms of its accepted language.
This is defined in the same way of the accepted language for timed
automata. The difference is that we use another infinite transition
system to define action sequences and runs: the transition system
S(T `u) = (Su,→). The states Su are triples (q, ν, δq) such that q ∈ Q is
the current state of the automaton T `u, ν is the current clock valuation
and δq ∈ R≥0 is a number recording the time elapsed since the state
q has been entered. The rules to derive the transitions of S(T `u) are
the following:

Timed Automata with Urgent Transitions 11

(Time)
δ ∈ R+

(q, ν, δq)
δ−→(q, ν + δ, δq + δ)

(Non-Urgent)

(q, ψ, γ, σ, q′) ∈ E , ν |= ψ,
(∀(q, ψu, γu, σu, q′u) ∈ U .(¬∃ δ. (0 ≤ δ ≤ δq ∧ ν − δ |= ψu)))

(q, ν, δq)
σ−→(q′, ν\γ, 0)

(Urgent)

(q, ψu, γu, σu, q
′) ∈ U , ν |= ψu,

(¬∃u′ = (q, ψu′ , γu′ , σu′ , q
′
u′) ∈ U .

(∃δ.0 ≤ δ ≤ δq ∧ δ ≥ ` ∧ ν − δ |= ψu′)),
(¬∃ u′ = (q, ψu′ , γu′ , σu′ , q

′
u′) ∈ U .

(∃δ.0 ≤ δ ≤ δq ∧ ν 6|= ψu′ ∧ ν − δ |= ψu′)

(q, ν, δq)
σu−→(q′, ν\γu, 0)

Rule (Time) lets the time elapse in a state and updates both
the clock valuation and the time elapsed in the state. Recall that,
due to the acceptance condition semantics, some states, in the action
sequence, must be entered infinitely many times. Thus the automaton
is not allowed to elapse time in a state infinitely.

Rule (Non-Urgent) can be used when T `u is in a state without
outgoing urgent edges (the ∀ condition is trivially true). In this case
the behavior is the same as timed automata. When T `u is in a state
with a set of urgent outgoing transition, the “¬∃” condition in the
rule requires that every urgent transition has never been enabled since
the current state was entered. If this is false the rule is not applicable.
Note that when a new state is entered the time elapsed is set to 0.

Rule (Urgent) executes an urgent action σu. The first “¬∃” con-
dition ensures that the urgent transition that is going to be executed
is taken before a time ` has elapsed after the enabling time of any
urgent transition. The second “¬∃” forbids the execution of the ur-
gent transition if there is a urgent transition which was enabled and
it is no longer so.

Example 1. Figure 3 shows an example of a timed automaton with a
urgent transition (graphically, we show this by attaching a “u” to the
edge). In this example we consider ` = 1. The automaton can execute
the action b when the value of the clock x is in the interval (0, 1]. When
the value of x becomes greater than 1, b cannot be performed any
longer and the urgent action a must be executed. Moreover, because
of the urgency, a must be performed while the value of x is in the
interval (1, 2].

12 Roberto Barbuti, Luca Tesei

Fig. 3 An automaton with urgent transitions, T 1
u

4 The expressive power of timed automata with urgent
transitions

In this section we show that, from a language theoretic point of view,
the expressive power of timed automata with urgent transitions is
equivalent to the one of timed automata. This is shown by providing
a three-steps transformation which preserves the accepted language.
Because timed automata are special cases of timed automata with
urgent transitions (U = ∅), the transformation is only given starting
from the latter ones.

4.1 The region form of a timed automaton

Let T `u be a timed automaton with urgent transitions. We give a trans-
formation that builds a timed automata accepting the same timed
language.

Note that if ` = a
b with a and b natural numbers (b 6= 0), it is

always possible to transform a T
a
b
u automaton to an isomorphic one

T au by multiplying all the constants in the clock constraints by b.
Practically this means that a different scale is used to measure time
and, indeed, this does not affect specification/verification tasks. So
we can assume without loss of generality that ` is a positive natural
number.

Given a set of clocks X , a clock region, as defined in [8], is an
equivalence class of clock evaluations such that, given two clock eval-
uations ν and ν ′ belonging to it, for every clock constraint ψ, ν |= ψ
iff ν ′ |= ψ. Note that, given a timed automaton T and a set of clocks
X , the clock regions are finite. Let us denote such a set by Reg(T,X).
We denote the equivalence class of a clock evaluation ν as [ν]. A clock
region α ∈ Reg(T,X) can be uniquely identified by specifying both

- for every clock x ∈ X , one clock constraint of the set
Cx = {x = c | c = 0, 1, . . . , cx} ∪ {c− 1 < x < c | c = 1, 2, . . . cx} ∪
{x > cx}

Timed Automata with Urgent Transitions 13

where cx is the greatest constant, in the constraints of T , which x
is compared to,

- for every pair of clocks x and y, with associated constraint c−1 <
x < c and d − 1 < y < d, for some c, d, an inequality of type
fract(x)#fract(y) where # ∈ {<,=, >} and fract(x) is the
fractional part of the value of clock x.

Given a clock region α ∈ Reg(T,X) and x ∈ X we denote by
RT (α, x) the unique clock constraint in Cx in the specification of α.

In [8] it is shown how to construct, given a clock region α ∈
Reg(T,X), the ordered set of clock regions that are time successors
of α. We denote such set by succ(α). The order ≤α of the clock
regions in the set succ(α) is total and such that α ≤α α′ iff α′ is a
time successor of α1.

Given a clock region α ∈ Reg(T,X) and a reset γ ⊆ X , we denote
by [γ → 0]α the clock region such that, for all x ∈ γ, the constraint
in α for x is substituted by x = 0.

In the following we need a transformation of clock constraints that,
starting from a constraint ψ, gives a logically equivalent constraint
min(ψ) such that it does not contain redundancies. Essentially the
transformation drops from ψ the atomic constraints which are implied
by others, yielding a minimal conjunction of constraints.

Definition 8. Given a constraint ψ over a set X of clocks. min(ψ)
is the equivalent constraint where there is only one constraint of the
form x = c, x # c, c # x #′ d or c # x, where #,#′ ∈ {<,≤} for
every clock x ∈ X .

Given x ∈ X , we denote by select(min(ψ), x) such unique con-
straint for x.

The following definition describes a first transformation, in region
form, of a timed automaton with urgent transitions. To this purpose
a state of the transformed automaton records both the state of the
original one and the equivalence class (clock region) of the values of
clocks when the state is entered. The resulting automaton is a timed
automaton that is equivalent to the original one and has a structural
property that will be used in the next step of the transformation for
proving the correctness of the transformation itself.

Definition 9. Let Tu = (Q,Σ, E ,U , I, R,X) be a timed automaton
with urgent transitions. The corresponding timed automaton in region
form, T ru = (Qr, Σ, Er,Ur, Ir, Rr,X) is defined as follows:

1 This has to be imposed for those cases in which α does not belong to succ(α)
i.e. points or lines regions.

14 Roberto Barbuti, Luca Tesei

- the states in Qr (resp. Rr) are of the form 〈q, α〉 where q ∈ Q
(resp. R) and α is a clock region,

- the states in Ir are of the form 〈q, [ν0]〉 where q ∈ I and ν0(x) = 0
for all x ∈ X

- (〈q, α〉, min(ψ)∧
∧
x∈X RTu(α′′, x), γ, σ, 〈q′, [γ → 0]α′′〉) ∈ Er (resp.

Ur) iff
(q, ψ, γ, σ, q′) ∈ E (resp. U), α ∈ Reg(Tu,X), and α′′ ∈ succ(α).

Note that the new states are built exactly as the ones of the region
automaton as defined in [8]. This construction differs from the one
for region automaton because constraints and resets are maintained
on the edges. These constraints are modified in order to force the cor-
responding edge to enter only one of the time successor clock regions
(in the sense that for other regions the constraint is always false).

Also note that this step can be applied to any timed automaton
yielding the following result.

Proposition 1. Given a timed automaton with urgent transitions Tu,
let T ru be Tu in region form. Then, L(Tu) = L(T ru).

Proof. By region construction correctness. ut

We want to remark that the region form of a timed automaton
can be, in general, a useful device for reasoning about the automaton
itself and its structure. In particular, we exploit, in the next step of
the transformation, the following property:

Proposition 2. Let Tu be a timed automaton with urgent transitions
and let T ru be Tu in region form. In every derivation of the transi-
tion system S(T ru), if a state (〈q, α〉, ν) is entered by performing a
transition labeled by σ ∈ Σ, then [ν] = α.

Proof. By definition 9. ut

Example 2. In Figure 4 it is shown the automaton of Figure 3 in region
form, denoted by T 1r

u . Note that the constraints explicitly show the
time successor clock region to which they refer. Note that all the
edges with a false constraint have been removed and, in the states,
there is only the [x = 0] region because both the original edges reset
x.

4.2 Making the urgent transitions `-consistent

The second step of the transformation will adapt the constraints of
the urgent transitions of T ru making them consistent with the seman-
tics we gave in Section 3. More precisely clock constraints are adapted

Timed Automata with Urgent Transitions 15

Fig. 4 Automaton T 1r
u

according to the behavior expressed by the rule (Urgent). In this
step we consider only the urgent actions and neglect the other ones
which remain unchanged. The third step will adapt these according
to the semantics.

Let 〈q, α〉 be a state of T ru such that in state q of Tu there was a
set of outgoing urgent transitions Uq = {u1, . . . , uk}, where ui =
(q, ψui , γui , σui , q

′
ui), i = 1, 2, . . . , k. Each of these transitions be-

comes, in T ru , a set of transitions

Eαui = {(〈q, α〉, min(ψui) ∧
∧
x∈X RTu(α′′, x), γui , σui , 〈q′ui , [γui → 0]α′′〉)|

α′′ ∈ succ(α)}

We need to determine the minimal upper bound of the enabling
interval of all the urgent actions which can be enabled in a state. By
the semantics of Section 3, we know that urgent transitions must be
taken before such a bound.

Using the total order ≤α defined in the set succ(α) and the prop-
erty of states expressed by Proposition 2 we can determine the set of
urgent actions which will be enabled.

F〈q,α〉 = {ui ∈ Uq | ∃α′ ∈ succ(α) ∪ {α}. α′ ⇒ min(ψui)}

If this set is empty, the state 〈q, α〉 and its outgoing urgent tran-
sitions remain unchanged. Otherwise we add to each outgoing urgent
transition an explicit constraint which forces it to respect both the
expiry time expressed by ` and the minimal upper bound of the en-
abling interval of other urgent transitions. Such an explicit constraint
does not modify the behavior of the automaton, but explicitly adds
to the transition constraint the conditions expressed by the semantic
rules of Section 3.

16 Roberto Barbuti, Luca Tesei

If in F〈q,α〉 there are transitions that are already enabled when the

state is entered we simply add to each transition in
⋃k
i=1E

α
ui a new

constraint imposing that the time elapsed in the state be less than
`. To do this we add in T ru a new clock variable. Whenever a state
is entered this clock is reset, so it can be used in the constraints of
outgoing edges as a measure of the time elapsed in the state.

If in F〈q,α〉 there are only transitions that are enabled after some
time, we determine the first clock region which satisfies a constraint of
an urgent action fst succ(α, min(ψui)) = minα′∈succ(α)∪{α}(α

′ ⇒
min(ψui) ∧ ui ∈ F〈q,α〉). Note that if fst succ(α, min(ψui)) = α then
the urgent transition is already enabled when the state is entered
(remember Proposition 2). By convention, if the clock constraint
min(ψui) is equivalent to false or it is consistent, but it will never be
true letting the time to elapse from α, the result of fst succ is > and
it has the property of being greater than any element of succ(α)∪{α}.
Moreover we can establish the immediate predecessor, according to
the total order, of a clock region α′ in the set succ(α). Let us denote
this by prec(α′). Again, if α′ is the minimum in succ(α), then its
predecessor is α.

Definition 10 (Set of Crucial Clocks). If α 6⇒ min(ψui), then we
define the set cruc(α, min(ψui)) as the set X − {x ∈ X |
RTu(prec(fst succ(α, min(ψui))), x)⇒ select(min(ψui), x)}. It con-
tains the only clocks that determine the truth of the constraint min(ψui)
in the region fst succ(α, min(ψui)).

Example 3. Let us explain the concept of “ crucial”. Let min(ψui)
be 0 < x < 2 ∧ 1 < y < 3. If α is [x = 0 ∧ 0 < y < 1] then
fst succ(α, min(ψui)) = [1 < y < 2 ∧ 0 < x < 1, fract(y) <
fract(x)] and prec(fst succ(α, min(ψui))) = [y = 1 ∧ 0 < x < 1].
In prec(fst succ(α, min(ψui))), the value of clock x, 0 < x < 1,
implies the atomic constraint select(min(ψui), x) = 0 < x < 2,
so x is not crucial for min(ψui). Instead, the value of y, y = 1,
does not imply select(min(ψui), y) = 1 < y < 3. Thus, we have
y ∈ cruc(α, min(ψui)).

If α is [y = 1 ∧ x = 0] then fst succ(α, min(ψui)) = [1 < y < 2 ∧
0 < x < 1, fract(y) = fract(x)] and prec(fst succ(α, min(ψui)))
is α itself. Here both x and y are crucial clocks.

Proposition 3. The set of crucial clocks always contains at least one
element.

Proof. By absurd, suppose it is empty. Then, the clock region
prec(fst succ(α, min(ψui))) would imply min(ψui). But, by defini-
tion, fst succ(α, min(ψui)) is the minimum clock region that implies

Timed Automata with Urgent Transitions 17

min(ψui) and prec(fst succ(α, min(ψui))) is strictly less than it us-
ing the order defined in succ(α) ∪ {α}. A contradiction. ut

Let ui ∈ F〈q,α〉. The constraint select(min(ψui), x), given any
crucial clock x, can be used to determine a constraint that force the
urgent action to be executed within ` time units from the time in
which it becomes enabled (and respecting the rules discussed in Sec-
tion 3). To do this we add to any transition in

⋃k
i=1E

α
ui the additional

constraint add(α, min(ψui))) constructed as follows. Given any crucial
clock x for min(ψui), x ∈ cruc(α, min(ψui)):

– add(α, min(ψui))) is (x < c + `) if select(min(ψui), x) is either
(x = c) or (c ≤ x#d) or (c ≤ x), where c < d and # ∈ {≤, <}.

– add(α, min(ψui))) is (x ≤ c + `) if select(min(ψui), x) is either
(c < x#d) or (c < x) where c < d and # ∈ {≤, <}.

The final step in the construction of a ` consistent timed automa-
ton is to add to all urgent transitions a constraint which forces all
of them to be executed (if possible) before the upper bound of the
enabling interval of the first disabled one: recall Figure 2(a). If such
an urgent transition does not exist, this step, for the current state,
ends. To formalize this search, we exploit again the total order de-
fined in succ(α). Given the set F〈q,α〉, we search, for each element
(q, ψui , γui , σui , q

′
ui) of this set, the clock region, in succ(α), in which

the constraint min(ψui) becomes false, if any. fst dis(α, min(ψui))
denote such clock region. If the constraint will never be false, letting
the time to elapse, in the current state, the result of this operation
is, by convention, > and has the property of being greater than any
element of succ(α). Now we can explicitly define the set of enabled
urgent transition which are first disabled.

L〈q,α〉 = {ui ∈ F〈q,α〉 | fst dis(α, min(ψui)) 6= > ∧ ∀uj ∈ F〈q,α〉.
fst dis(α, min(ψui)) ≤α fst dis(α, min(ψuj))}

Taking any transition ui in this set, we have to find the clock
constraint to add to other urgent transitions that disables them when
ui is disabled. To this purpose we introduce the following definition.

Definition 11. Let ψ be a constraint without redundancies over a set
of clocks X .

The lower opening O−(ψ) of ψ is obtained by deleting from ψ all
the constraints of the form c ≤ x and c < x, and by substituting all
the constraints of the form x = c by x ≤ c, for all x ∈ X .

Analogously, the upper opening O+(ψ) of ψ is obtained by deleting
from ψ all the constraints of the form x ≤ c and x < c, and by

18 Roberto Barbuti, Luca Tesei

substituting all the constraints of the form x = c by c ≤ x, for all
x ∈ X .

Clearly this definition requires constraints of the form c#x#d,
∈ {<,≤}, to be considered as c#x ∧ x#d.

Thus if we want that all the urgent transitions will be disabled
when ui is disabled, we need to add to all of them the constraint
O−(min(ψui)) which becomes false at the same time of the first dis-
abled urgent transition.

Definition 12. Let T ru = (Qr, Σ, Er,Ur, Ir, Rr,X) be a timed au-
tomaton with urgent transitions in region form. The `-consistent ver-
sion of it, `T ru , is the timed automaton (Qr, Σ, Er,Ur` , Ir, Rr,X r)
where X r = X ∪ {xtime state} and Ur` is constructed as follows:

1. (〈q, α〉, ψ, γ∪{xtime state}, σ, 〈q′, α′〉) ∈ Ur` iff (〈q, α〉, ψ, γ, σ, 〈q′, α′〉) ∈
Ur and F〈q,α〉 = ∅

2. (〈q, α〉, ψ ∧ xtime state < `, γ ∪ {xtime state}, σ, 〈q′, α′〉) ∈ Ur` iff
(〈q, α〉, ψ, γ, σ, 〈q′, α′〉) ∈ Ur and u ∈ F〈q,α〉 and α⇒ min(ψu) and
L〈q,α〉 = ∅

3. (〈q, α〉, ψ∧xtime state < `∧O−(min(ψu′)), γ∪{xtime state}, σ, 〈q′, α′〉) ∈
Ur` iff (〈q, α〉, ψ, γ, σ, 〈q′, α′〉) ∈ Ur and u ∈ F〈q,α〉 and α⇒ min(ψu)
and u′ ∈ L〈q,α〉

4. (〈q, α〉, ψ ∧ add(α, min(ψu)), γ ∪ {xtime state}, σ, 〈q′, α′〉) ∈ Ur` iff
(〈q, α〉, ψ, γ, σ, 〈q′, α′〉) ∈ Ur and u ∈ F〈q,α〉 and α 6⇒ min(ψu) and
L〈q,α〉 = ∅

5. (〈q, α〉, ψ ∧ add(α, min(ψu)) ∧ O−(min(ψu′)), γ∪{xtime state}, σ,
〈q′, α′〉) ∈ Ur` iff (〈q, α〉, ψ, γ, σ, 〈q′, α′〉) ∈ Ur and u ∈ F〈q,α〉 and
α 6⇒ min(ψu) and u′ ∈ L〈q,α〉

Proposition 4. Given a timed automaton with urgent transitions
in region form T ru and its `-consistent version `T ru , then L(T ru) =
L(`T ru).

Proof. Let us first add the clock xtime state to all edges of T ru . This
operation results in an equivalent timed automaton with urgent tran-
sitions.

The proof proceeds for cases.

Case 1. Consider the hypothesis F〈q,α〉 = ∅.
We have

F〈q,α〉 = ∅
≡ {By definition of F〈q,α〉}
¬∃u ∈ Uq.(∃α′ ∈ succ(α) ∪ {α}.α′ ⇒ min(ψu))

Timed Automata with Urgent Transitions 19

≡ {By Proposition 2}
¬∃(〈q, α〉, ψ, γ, σ, 〈q′, α′〉) ∈ Ur.[ν] ∈ α ∪ succ(α) ∧ ν |= ψ

Thus, no urgent action can be performed in 〈q, α〉 and the state
is equivalent in both T ru and `T ru .
Case 2. Consider the hypothesis u ∈ F〈q,α〉 and α⇒ min(ψu) and
L〈q,α〉 = ∅.
We have:

(a)

(u ∈ F〈q,α〉 ∧ α⇒ min(ψu)) ∧ L〈q,α〉 = ∅
⇒ {by definition of L〈q,α〉}
(u ∈ F〈q,α〉 ∧ α⇒ min(ψu)) ∧
(¬∃u ∈ F〈q,α〉. | (∃α′ ∈ succ(α). fst dis(α, min(ψu)) 6= >))

⇒ {by definition of F〈q,α〉, L〈q,α〉 and Proposition 2}
∀ν : [ν] ∈ α ∪ succ(α).
(∀δ〈q,α〉 ≥ `.(∃u = 〈q, α〉, ψ, γ, σ, 〈q′, α′〉) ∈ Ur.(∃δ.0 ≤ δ ≤ δ〈q,α〉 ∧
δ ≥ ` ∧ ν − δ |= ψ)) ∧
(∀δ〈q,α〉 < `.(¬∃u = 〈q, α〉, ψ, γ, σ, 〈q′, α′〉) ∈ Ur.(∃δ.0 ≤ δ ≤
δ〈q,α〉 ∧ δ ≥ ` ∧ ν − δ |= ψ)) ∧
∀δ〈q,α〉.(¬∃u = 〈q, α〉, ψ, γ, σ, 〈q′, α′〉) ∈ Ur.(∃δ.0 ≤ δ ≤ δ〈q,α〉∧ν 6|=
ψ ∧ ν − δ |= ψ)

Now, let us consider (〈q, α〉, ψ, γ, σ, 〈q′, α′〉) ∈ Ur.
The condition for performing such an action, given by the (Ur-
gent) rule is:

ν |= ψ ∧
(¬∃u′ = (〈q, α〉, ψu′ , γu′ , σu′ , 〈q′, α′〉) ∈ Ur.
(∃δ.0 ≤ δ ≤ δ〈q,α〉 ∧ δ ≥ ` ∧ ν − δ |= ψu′))
(¬∃u′ = (〈q, α〉, ψu′ , γu′ , σu′ , 〈q′, α′〉) ∈ Ur.
(∃δ.0 ≤ δ ≤ δ〈q,α〉 ∧ ν 6|= ψu′ ∧ ν − δ |= ψu′))

which, under the hypothesis and proof (a), is equivalent to:

ν |= ψ ∧ δ〈q,α〉 < `

Now ν |= ψ∧δ〈q,α〉 < ` iff ν |= (ψ∧xtime state < `), thus an urgent
action (〈q, α〉, ψ∧xtime state < `, γ∪{xtime state}, σ, 〈q′, α′〉) ∈ Ur`
can be performed if and only if (〈q, α〉, ψ, γ, σ, 〈q′, α′〉) ∈ Ur can
be performed.
Case 3. Consider the hypothesis u ∈ F〈q,α〉 and α⇒ min(ψu) and
u′ ∈ L〈q,α〉.
Under the hypothesis u ∈ F〈q,α〉 and α ⇒ min(ψu), the proof of
Case 2. states that the introduction of the constraint xtime state <

20 Roberto Barbuti, Luca Tesei

` guarantees that no urgent action can be performed after ` time
units from the enabling of the first urgent action.

Now we have an additional hypothesis:

u′ ∈ L〈q,α〉
⇒ {By the definitions of L〈q,α〉, O− and the hypothesis}
∀ν : [ν] ∈ α ∪ succ(α).ν 6|= O−(min(ψu′)) ≡ ((∃δ.0 ≤ δ ≤ δ〈q,α〉 ∧
ν 6|= ψu′ ∧ ν − δ |= ψu′))

Thus, for the (Urgent) rule, an urgent action could be performed
only if ν |= O−(min(ψu′)). We can conclude that an urgent action
(〈q, α〉, ψ∧xtime state < `∧O−(min(ψu′), γ∪{xtime state}, σ, 〈q′, α′〉) ∈
Ur` can be performed if and only if (〈q, α〉, ψ, γ, σ, 〈q′, α′〉) ∈ Ur can
be performed.
Cases 4. and 5. The proof proceeds analogously to the ones of
the other cases.
ut

4.3 The quiet version of a timed automaton with urgent transitions

Now, in order to achieve the desired behavior, in each state of `T ru
we have to turn off all the originally non-urgent outgoing transitions
when at least one of the edges obtained by the originally urgent tran-
sition is enabled. This is the third transformation step.

Let e = (〈q, α〉, ψ, γ, σ, 〈q′, α′〉) be a non-urgent outgoing transi-
tion from a state in `T ru . We map e in some transitions e′ = (〈q, α〉, ψ∧
θ, γ, σ, 〈q′, α′〉) of the new automaton where θ is the constraint that
will become false when at least one of the outgoing urgent transitions
of the state 〈q, α〉 in `T ru becomes true. The disjunction of the up-
per opening (Definition 11) of all urgent edges constraints (without
redundancies) outgoing from a state in `T ru , describes a right-infinite
time interval to the beginning of which an urgent transition must
be taken. The negation of this disjunction must be added to all the
constraints of non-urgent edges of T ru outgoing from the same state.

The negation of a complex formula can introduce disjunction of
constraints. We denote by DNF+ an operation that, given a constraint
which contains negations, push the negation operator inside, using the
logical axioms for ¬,∧,∨, until it is applied to atomic constraints.
Then it transforms the negations of these constraints to the corre-
spondent positive ones (x = c will be translated into x < c∨ c < x).
Finally, it transforms the formula in disjunctive normal form. It re-
turns the set containing all the conjunctive components of the for-
mula.

Timed Automata with Urgent Transitions 21

Definition 13. Let `T ru = (Qr, Σ, Er,Ur` , Ir, Rr,X r) be the `-consistent
version of a timed automaton with urgent transitions in region form
T ru . The quiet version of it, T quiet

u , is the timed automaton (Qr, Σ, E =
Ur` ∪ E ′, Ir, Rr,X r) where E ′ is constructed as follows:
(〈q, α〉, ψ∧φ, γ∪{x〈q′,α′〉}, σ, 〈q′, α′〉) ∈ E ′ iff (〈q, α〉, ψ, γ, σ, 〈q′, α′〉) ∈
Er, and φ ∈ DNF+(¬(

∨
uO+(min(ψu))) for all (〈q, α〉, ψu, γu, σu, 〈q′′, α′′〉) ∈

Ur` .

Example 4. Figure 5 shows the automaton T 1quiet which is the 1-
consistent and quieted version of the automaton T 1

u of Figure 3. Note
that the constraint 1 < x on one of the edges for b has been modified
to 1 < x∧x ≤ 1 by the last transformation. Thus, being always false
has been removed. In figure, the clock xtime state is omitted because
it is useless in this case.

Fig. 5 Automaton T 1quiet

Theorem 1. Let Tu be a timed automaton with urgent transitions,
T ru the corresponding timed automata in region form and T quiet

u its
quiet version. Then L(Tu) = L(T quiet).

Proof. Starting from the result of Proposition 4, the proof proceeds
analogously to the one of Proposition 4 itself. ut

As a last remark of this section we want to discuss the size of the
output of the transformation. Indeed, it turns out that our notion
of urgent actions is a succinct way to express urgency. To see this
consider that one could just design his/her automaton as the quiet
version we obtain by the transformation. That is to say, one can think
about states as pairs 〈q, α〉 and use suitable constraints to express
urgency as we do by the algorithm.

However, it is clear that the quiet automaton has a larger size
than the automaton with urgent transitions. As a first approximation

22 Roberto Barbuti, Luca Tesei

the size of the quiet version of the automaton is at least the size of
the region automaton of [8]. Here we consider the size of a timed
automaton as the sum of the number of states and the number of clock
constraints on the edges. The size of the quiet version is greater than
that because we add constraints (and edges) to induce the behavior
specified by the formal semantics.

5 Using timed automata with urgent transitions as a
specification formalism

In the previous section we defined a new feature for the timed au-
tomata specification formalism. After that we showed how to compile
a timed automaton with urgent transition into a standard timed au-
tomaton.

Indeed, a specification formalism needs a way to define systems as
a composition of components. For timed automata this mechanism is
the parallel composition (see Section 2). The parallel composition of
timed automata with urgent transitions is defined in the same way,
but the following remarks:

– the urgency of a transition of a component with a synchronization
action σ extends to the transition obtained using the rule (i) of
Definition 6,

– the urgency of a transition of a component extends to the transi-
tion obtained by the rules (ii) and (iii) of Definition 6.

It is easy to see that the transformation defined in the previous
section is not a congruence with respect to parallel composition. In
other words if we have two timed automata, T 1

u and T 2
u , with urgent

transition the automaton T 1
u ‖ T 2

u , when defined, is not equivalent, in

general, to T quiet
1 ‖ T quiet

2 (the standard parallel composition of the
quiet version of them).

Fig. 6 Automaton A1
u and its quiet version A1quiet

Timed Automata with Urgent Transitions 23

Example 5. Consider the automaton A1
u of Figure 6(a), the automa-

ton T 1
u of Figure 3 and the parallel composition T 1

u ‖ A1
u. The action

c, having the constraint y > 0 and being urgent, surely preempts the
action b at the beginning of every run. The parallel composition of the
quiet version of T 1

u (Figure 5) and of the quiet version of A1
u (Figure

6(b)) has a different behavior: in the automaton T 1quiet ‖ A1quiet the
action b can be performed at the beginning of a run before the urgent
action c. This is because the transformation of T 1

u into T 1quiet does
not consider the urgency of the action c belonging to the component
A1quiet .

Thus, the interpretation of the non-urgent outgoing transitions in
a state of an automaton respect to the urgency of a transition de-
pends on the context in which the automaton is considered. If it is
viewed as a component instead of a stand-alone system, the enabling
of those transitions should change taking into account other compo-
nent’s urgent transitions that could interleave with them. This aspect
turns out explicitly in the example of the following section.

6 An example

As an example of specification of a system with urgent actions we use
a part of a multicast protocol for mobile computing presented in [12].
There the protocol is specified by the Calculus of Communicating
Systems (CCS) [30], and the Concurrency Workbench tool [13] is
used to state some required properties.

Let us start with an informal description of the protocol, quoted
from [12]:

“. . . We consider a system composed of mobile hosts and stationary
hosts.

Communication occurs solely via message-passing. Some station-
ary hosts (gateways) are connected to a wired network that provides
reliable and FIFO-ordered communication and to a wireless link, that
covers a spatially limited cell nearby the gateway. Mobile hosts may
move and communicate through wireless links. A gateway may broad-
cast messages to all mobile hosts in its cell. A mobile host may only
exchange messages with the gateway of the cell where it happens to
be located.

We shall associate a different meaning with the terms “receiving”
and “delivering” a message. A host C receives a message msg when
msg arrives at its protocol layer. Upon receiving msg, the protocol
may discard msg or pass msg up to one of its applications. In the
latter case, C is said to deliver msg.

24 Roberto Barbuti, Luca Tesei

The protocol works as follows. A dedicated stationary host acts
as the coordinator , denoted as SC. A mobile host generates a mul-
ticast by sending a message to a gateway, which forward it to SC.
SC constructs a message containing an increasing sequence number,
then transmits the resulting message to gateways through a FIFO-
multicast. Gateways broadcast this message to mobile hosts in the
respective cells.

Due to its movement across cells, any mobile host m could receive
duplicates or could miss multicasts. By maintaining a history of the
received sequence numbers, m discards duplicates in the former case
and sends to the stationary hosts a proper nack message in the latter
(e.g., upon receiving an out-of-order message). Upon receiving a nack,
the stationary host will relay to m a copy of the missing multicasts.”

The protocol was designed to guarantee several properties, in par-
ticular: ”Each mobile host m delivers each multicast under reasonable
assumptions, as follows: m stops delivering messages if: (i) m starts
entering and leaving cells so quickly that its messages never arrive
to any stationary host or messages from gateways are systematically
lost; and (ii) this pattern of movements persists forever.

. . . ”

The explicit assumption in the formulation of the property is due
to the fact that CCS specifications cannot express constraints on the
speed of mobile hosts. Thus, using this specifications, the system can
have “bad” behaviors, which must be ruled out in the property formu-
lation. This means that the verification of the property is restricted
to all the possible “good” behaviors. That is, the execution paths
in which the mobile host enters and leaves cells without getting any
message, although possible, are disregarded.

With timed automata with urgent transitions we can easily de-
scribe the behavior of the components involved in the protocol to-
gether with important time parameters such as the speed of a mobile
agents, that is the minimal amount of time it can stay in a cell or
the frequency it exchanges messages with the stationary hosts. This
allows to state the property on the whole system behavior which, due
to time parameters, should not allow “bad” executions.

To make a simple example of this feature of timed automata with
urgent transitions, we extract from the above presented protocol the
part dealing with the iterated request of a mobile host to broadcast a
message until it effectively receive it. For reasons of simplicity we as-
sume only one mobile host, two stationary ones and the coordinator,
as shown in Figure 7. Of course, the mobile host, being unique, can-

Timed Automata with Urgent Transitions 25

not receive multicasts generated by other mobile hosts. We assume
that multicasts are generated directly by the gateways.

The system is specified by the parallel composition of the au-
tomata specifying each entity.

Fig. 7 The scenario

The coordinator SC is defined in Figure 8. It accepts a request
from a gateway gj (reqgj (i)) for broadcasting the i − th message.
Then it tries to contact all the gateways to signal that the i − th
message must be sent to their cells. Note that the coordinator tries to
contact the stationary hosts sequentially, it passes to contact the next
one only if either the previous accepted the request (signalgj (i)) or it
does not respond for twenty time units (failgj). Note that in the latter
case the coordinator proceeds in, at most, twenty one time units. It
is important to remark that the action of contacting the stationary
hosts is urgent. That is, when enabled, it cannot be skipped and it
must be done within a given time interval. One could observe that the
automaton always have the urgent transition enabled when it enters
state 2 (and 3) and so the failg1(i) (failg2(i)) transition can never
be taken. But, as observed in Section 5, this automaton has to be
understood as a component of a whole system. This means that the
semantics of urgency is defined in terms of the whole system where the
action signalg1(i) (and signalg1(i)) is a synchronization action and
can be executed only if the partner (the gateway) can execute it. This
depends on the state in which it currently is. Thus, in some runs of the
whole system, it could happen that the action failg1(i) (failg2(i))
is taken depending on the relative speed of the components and on
the interleaving of non-synchronization actions. Note that without
urgent transitions we cannot impose the priority and the urgency
of the action signalg1(i) (signalg1(i)) with respect to the action

26 Roberto Barbuti, Luca Tesei

failg1(i) (failg2(i)) in state 2 (3) because the standard semantics
of timed automata would execute them non-deterministically.

Fig. 8 The coordinator SC

A gateway gj is defined in Figure 9. It passes the requests for
broadcasting the i− th message from the mobile host (reqmgj (i)) to
the coordinator (reqgj (i)), and broadcasts the message msggj (i) on
its cell upon request of the coordinator (signalgj (i)). Note that the
action of sending the message is urgent, it can be skipped only if the
mobile host do not respond within ten time units. The same remarks
on urgency on parallel composition given above applies here.

Fig. 9 The gateway gj

Finally, the mobile host m is defined in Figure 10. It tries, every
two units of time, and for a duration of two time units, to contact
the gateway for requesting to broadcast the i − th message. When
the i − th message is received and delivered a message counter is
increased. Note that, due to parallel composition, both actions are
urgent, so they must be done if enabled. Moreover, the mobile host
can move from a cell to another; however its speed cannot allow to

Timed Automata with Urgent Transitions 27

stay in a cell less than fifty time units. This action is not urgent, that
is a host can stay in a cell also if the action of moving is enabled.

Fig. 10 The mobile host m

Our notion of urgency expresses both a priority among actions and
a time constraint on their execution. Both these concepts are useful in
specifying real systems. In the scenario of Figure 7, the mobile host,
when staying within a cell, must first of all try to communicate with
the gateway and, if possible, it must do it immediately. If we remove
the urgency annotation from the previous automata, the mobile host
could never communicate while waiting for the time of moving.

With this specification, the correctness property of the protocol
can be simply restated as: “Each mobile host m delivers each multi-
cast”.

Because we have not yet a tool implementing our notion of ur-
gency, we have used the features of UPPAAL [16] (a verification tool
for timed automata) to verify the protocol. In particular we used its
notions of urgent states and urgent channels to simulate our notion
of urgency. These features are not sufficient to express the notion
that we have introduced in this paper and thus the system that we
have tested is an approximation of the one shown in this section. We
do not report here the details of this test. It results that the prop-
erty expressed in the previous paragraph is verified by a system in
which there are two gateways, a mobile host and a fixed number n
of broadcast messages. It is interesting to report that with different
relative times in the constraints of the mobile host in Figure 10 the
property is not verified. This means that the speed of the mobile host
is a crucial parameter for determining the truth of the property.

28 Roberto Barbuti, Luca Tesei

7 Notes on Implementation

In this section we address two problems that arise in the effective use
of timed automata with urgent transitions and the defined transfor-
mation. The first is the progress model used by the automata and
the second is the state explosion due to the region automaton con-
struction.

We have used in this paper the original model of timed automata
[8] in which the semantics of an automaton is its accepted timed
language according to the Büchi acceptance condition. Moreover the
states of an automaton have not invariant constraints to satisfy. This
type of model always allows time to advance in a state (recall rule
1 of the transition system for the semantics of timed automata in
Section 2 or rule (Time) of the one for timed automata with urgent
transitions in Section 3). If in a derivation the time advance too much
so that the automaton cannot perform transitions any more, then the
derivation is discarded by the acceptance condition and is not con-
sidered as a behavior of the system. The problem with this model is
the fact that we cannot decide how to progress, from each state, into
a correct run using only the information of the state. In other words
the progress of a correct run requires, in each local state, an informa-
tion that is global to the automaton. It is difficult to implement or to
construct a simulator for this model. For this reason, in verification
and model checking tools, the used model is different. The informa-
tion required for the progress is local: the states are equipped with an
invariant condition which must be always true when the control is in
the state (the absence of a condition corresponds to a true one). This
feature can be used to assures the progress of every derivation of the
transition system defining the semantics of the automaton. Accep-
tance conditions are not used and the implementation of the model
is relatively easy. This model was introduced in [28] and is used in
all simulators and verification tools developed for timed automata.

From a technical point of view, the local progress model corre-
spond to the one defined in Sections 2 and 3 with the following dif-
ferences:

– the states of the automaton can be associated with invariants
(clock constraints)

– the rules of the transition system that lets the time to elapse (see
above) have one more premise of the form ∀δ′.0 < δ′ ≤ δ ⇒
ν + δ′ |= φ where φ is the state invariant.

– the semantics of a timed automaton is the set of all infinite, time
divergent derivations of the transition system.

Timed Automata with Urgent Transitions 29

It is easy to see that the definition of timed automata with urgent
transitions and the transformation that we have developed is the
same if the model of local progress is used. The only difference is in
the construction of the region form of the automaton in which every
state 〈s, α〉 has the invariant condition of the state s in the original
automaton. The proof of correctness is the same.

The real difference between the two models is in the process of
specification and/or design of a real-time system by a timed automa-
ton. It is in that process that one decides the progress model to adopt
and then, accordingly, writes the automaton. Thus, we remark that
our definition and transformation is correct w.r.t. both the models.
We have chosen the original one because in that context we can state
that the expressing power (the set of timed languages recognizable
by one device) of timed automata with urgent transitions is the same
than the one of original timed automata (Theorem 1).

The problem of state explosion in verification using timed au-
tomata is a serious aspect that has been attacked from the beginning
of the presentation of the model. The main source of this explosion is
the region construction that we have recalled in Section 4. The num-
ber of regions is exponential in the number of clocks and in the mag-
nitude of the largest integer constant used in the clock constraints.
The main tool to contain this complexity is the use of clock zones in-
stead of clock regions. A clock zone is a convex union of clock regions
and, like these ones, can be expressed by a conjunction of clock con-
straints. The use of zones and of other suitable data structures (e.g.
difference-bound matrices) have been very useful in making practi-
cally feasible the verification of properties of timed system specified
by timed automata (see, for instance, [5,31,2,3]).

For the sake of simplicity and clarity of exposition we have used,
in our transformation of Section 4, the region form of a timed au-
tomaton (Definition 9). Such device is very useful to define and, for
its properties, also to prove the correctness of the transformation.
However, it suffers of the problem of state explosion. With regard
to this, we state that it is possible to define a transformation that
uses clock zones instead of clock regions. Such a transformation starts
with the definition of the zone form of a timed automaton. This au-
tomaton is the analogous of the region form of the timed automaton
if the zone automaton construction [5,31,3] is used instead of the re-
gion automaton construction. The second and the third step of the
transformation remain unchanged.

30 Roberto Barbuti, Luca Tesei

8 Related works

The notion of urgency and/or priority for timed formalisms has been
studied in the past. In [17] the urgency of actions has been investi-
gated in the process algebra field with the concept of discrete time.
Different notions of priority have been introduced for timed automata
in [25] and for timed process algebras in [22,21].

A closer approach to ours can be found in [18,20,19]. There the
states of a timed automaton are associated with time progress condi-
tions (TPC). TPC are state conditions which specify that the time
can progress at a state by δ only if all the intermediate times δ′,
0 ≤ δ′ < δ, satisfy it.

TPC are computed from deadlines. Deadlines are clock constraints
associated to transitions in addition to the usual constraints (which,
in this setting, are called guards). The defined class of timed automata
is called Timed Automata with Deadlines (TAD).

Given a state q, its TPC is intuitively computed as follows. Con-
sider the set I = {i | ti is a transition outgoing from q} of indexes
of transitions from q. The TPC of q, cq, is obtained as the negation
of the disjunction of the deadlines, di, of all the transitions from q,
cq = ¬

∨
i∈I di. In a state of a run, (q, ν), the time can progress by δ,

(q, ν)
δ−→(q, ν + δ), if ∀δ′ < δ.ν + δ′ |= cq.

Given a transition in a TAD, with guard ψ and deadline d, we
can found in [20] the following remark.

“The relative position of d with respect to ψ determines the ur-
gency of the action. For a given ψ, the corresponding d may take two
extreme values: first, d = ψ, meaning that the action is eager and,
second, d = false, meaning that the action is lazy. A particularly
interesting case is the one of a delayable action where d is the falling
edge of a right-closed guard ψ (cannot be disabled without enforcing
its execution).

The condition d ⇒ ψ guarantees that if time cannot progress at
some state, then at least one action is enabled from this state. Restric-
tion to right-open TPC guarantees that deadlines can be reached by
continuous time trajectories and permits to avoid deadlock situations
in the case of eager transitions. For instance, consider the case where
d = ψ = x > 2, implying the TPC x ≤ 2, which is not right-open.
Then, if x is initially 2, time cannot progress by any delay ψ, accord-
ing to above definition. The guard ψ is not satisfied either, thus, the
system is deadlocked.”

This limitation is very intuitive: if the eager transition has a left-
open guard, the time at which it can be fired is undefined. Using

Timed Automata with Urgent Transitions 31

our concept of urgent transition we avoid this problem because the
transition can be fired in the interval in which x is in [2, 2+`). On the
other hand, if a transition with a left-closed guard, say x ≥ 2, need
to be fired “as soon as possible” we can approximate this behavior
using a constant ` small as needed.

With regard to the problem of right-closed TPCs it is also in-
teresting to note that the introduction of urgent transitions in the
tools of verification of timed automata is a difficult task. By now,
the latest version of UPPAAL2 has introduced the concept of “ur-
gent channels”3 which model transitions that must be fired as soon
as possible. But their use is very restricting because a guard cannot
be associated with them.

References

1. L. Aceto, P. Bouyer, A. Burgueño, and K. G. Larsen. The power of reach-
ability testing for timed automata. In Proceedings of the 18th Confer-
ence on Foundations Software Technology and Theoretical Computer Science
(FSTTCS’98), number 1530 in Lecture Notes in Computer Science, pages
245–256. Springer, Berlin, 1998.

2. L. Aceto, A. Burgueño, and K. Guldstrand Larsen. Model checking via reach-
ability testing for timed automata. In Proceedings of the 4th International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’98), number 1384 in Lecture Notes in Computer Science,
pages 263–280. Springer, Berlin, 1998.

3. R. Alur. Timed automata. In Proceedings of the 11th International Conference
on Computer-Aided Verification (CAV’99), number 1633 in Lecture Notes in
Computer Science, pages 8–22. Springer, Berlin, 1999.

4. R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking in dense real-time.
Information and Computation, 104:2–34, 1993.

5. R. Alur, C. Courcoubetis, N. Halbwachs, D. L. Dill, and H. Wong-Toi. Min-
imization of timed transition systems. In In Proceedings of the 3rd Inter-
national Conference on Concurrency Theory (CONCUR’92), number 630 in
Lecture Notes in Computer Science, pages 340–354. Springer, Berlin, 1992.

6. R. Alur, C. Courcoubetis, and T. A. Henzinger. The observational power of
clocks. In Proceedings of the 5th International Conference on Concurrency
Theory (CONCUR’94), number 836 in Lecture Notes in Computer Science,
pages 162–177. Springer, Berlin, 1994.

7. R. Alur and D. L. Dill. Automata for modeling real-time systems. In Pro-
ceedings of the 17th Colloquium on Automata, Languages and Programming
(ICALP’90), number 443 in Lecture Notes in Computer Science, pages 322–
335. Springer, Berlin, 1990.

8. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183–235, 1994.

2 UPPAAL Version 3.4.2 downloadable at http://www.uppaal.com
3 See the documentation at http://www.uppaal.com

32 Roberto Barbuti, Luca Tesei

9. R. Alur, L. Fix, and T. A. Henzinger. Event-clock automata: A determinizable
class of timed automata. Theoretical Computer Science, 211:253–273, 1999.

10. R. Alur and T. A. Henzinger. Back to the future: Towards a theory of timed
regular languages. In Proceedings of the 33th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’92), pages 177–186. IEEE Com-
puter Society Press, 1992.

11. R. Alur and T. A. Henzinger. A really temporal logic. Journal of the ACM,
41:181–204, 1994.

12. G. Anastasi, A. Bartoli, N. De Francesco, and A. Santone. Efficient verifica-
tion of a multicast protocol for mobile computing. The Computer Journal,
44:21–30, 2000.

13. R. Cleaveland anf S. Sims. The ncsu concurrency workbench. In Proceedings
of the 8th conference on Computer Aided Verification (CAV’96), number 1102
in Lecture Notes in Computer Science, pages 394–397. Springer, Berlin, 1996.

14. R. Barbuti, N. De Francesco, and L. Tesei. Timed automata with non-
instantaneous actions. Fundamenta Informaticae, 47(3-4):189–200, 2001.

15. R. Barbuti and L. Tesei. Timed automata with urgent transitions. In F. Cor-
radini and W. Vogler, editors, Proceedings of the 2nd International Work-
shop on Models for Time-Critical systems (MTCS’01), number NS-01-5 in
BRICS Notes, pages 3–21. Department of Computer Science, Aarhus Univer-
sity Press, 2001.

16. J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi. UPPAAL –
a tool suite for automatic verification of real-time systems. In Proceedings of
the 4th DIMACS Workshop on Verification and Control of Hybrid Systems,
number 1066 in Lecture Notes in Computer Science, pages 232–243. Springer,
Berlin, 1996.

17. T. Bolognesi and F. Lucidi. Timed process algebras with urgent interactions
and a unique powerful binary operator. In Proceedings of Real-Time: Theory
in Practice Workshop (REX Workshop 1991), number 600 in Lecture Notes
in Computer Science, pages 124–148. Springer, Berlin, 1992.

18. S. Bornot and J. Sifakis. Relating time progress and deadlines in hybrid
systems. In Proceedings of International Workshop on Hybrid and Real-Time
Systems (HART’97), number 1201 in Lecture Notes in Computer Science,
pages 286–300. Springer, Berlin, 1997.

19. S. Bornot and J. Sifakis. An algebraic framework for urgency. Information
and Computation, 163(1):172–202, 2000.

20. S. Bornot, J. Sifakis, and S. Tripakis. Modeling urgency in timed systems.
In Proceedings of Compositionality Meeting (COMPOS’97), number 1536 in
Lecture Notes in Computer Science, pages 103–129. Springer, Berlin, 1998.

21. P. Brémond-Grégoire and I. Lee. A process algebra of communicating shared
resources with dense time and priorities. Theoretical Computer Science, 189(1-
2):179–219, 1997.

22. M. Buchholtz, J. Andersen, and H. H. Lovengreen. Towards a process algebra
for shared processors. In F. Corradini and W. Vogler, editors, Electronic Notes
in Theoretical Computer Science, volume 52. Elsevier, 2002.

23. C. Choffrut and M. Goldwurm. Timed automata with periodic clock con-
straints. Journal of Automata, Languages and Combinatorics, 5(4):371–403,
2000.

24. F. Demichelis and W. Zielonka. Controlled timed automata. In Proceedings of
9th International Conference on Concurrency Theory (CONCUR’98), number

Timed Automata with Urgent Transitions 33

1466 in Lecture Notes in Computer Science, pages 455–469. Springer, Berlin,
1998.

25. E. Fersman, P. Petterson, and W. Yi. Timed automata with asynchronous
processes: Schedulability and decidability. In Proceedings of TACAS 2002,
number 2280 in Lecture Notes in Computer Science, pages 67–82. Springer,
Berlin, 2002.

26. V. Gupta, T. A. Henzinger, and R. Jagadeesan. Robust timed automata.
In Proceedings of International Workshop on Hybrid and Real-Time Systems
(HART’97), number 1201 in Lecture Notes in Computer Science, pages 331–
345. Springer, Berlin, 1997.

27. T. A. Henzinger and P. W. Kopke. Verification methods for the divergent
runs of clock systems. In Proceedings of the 2nd International Symposium on
Formal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT’94),
number 863 in Lecture Notes in Computer Science, pages 351–372. Springer,
Berlin, 1994.

28. T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model check-
ing for real-time systems. Information and Computation, 111:193–244, 1994.

29. R. Lanotte, A. Maggiolo-Schettini, and A. Peron. Timed cooperating au-
tomata. Fundamenta Informaticae, 43:153–173, 2000.

30. R. Milner. A Calculus of Communicating Systems. Springer, Berlin, 1980.
31. S. Yovine. Model checking timed automata. In Lectures on Embedded Systems,

number 1494 in Lecture Notes in Computer Science, pages 114–152. Springer,
Berlin, 1996.

