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Abstract. We provide a unifying view of timed models such as timed
automata, probabilistic timed automata, and Markov automata. The
timed models and their bisimulation semantics are encoded in the frame-
work of uniform labeled transition systems. In this unifying framework,
we show that the timed bisimilarities present in the literature can be re-
obtained and that a new bisimilarity, of which we exhibit the modal logic
characterization, can be introduced for timed models including probabil-
ities. We finally highlight similarities and differences among the models.

1 Introduction

Several extensions of classical automata have been proposed in the last twenty
years to model timed aspects of the behavior of systems and to support the
verification of hard and soft real-time constraints. The first of these extensions
is given by timed automata (TA) [1]. They are equipped with clock variables that
measure the passage of time within states, while transitions are instantaneous,
may be subject to clock-based guards, and may reset the value of some clocks.

A subsequent extension is that of probabilistic timed automata (PTA) [12].
They are TA where the destination of every transition is a function that asso-
ciates with each state the probability of being the target state. This allows for
the representation both of nondeterministic choices and of probabilistic choices,
and enables the investigation of properties such as the probability of executing
certain activities within a given deadline is not lower than a given threshold.

The semantics of a TA/PTA can be defined in terms of a variant of labeled
transition system (LTS) [11] together with a notion of bisimulation [8]. The
characteristic of the underlying variant of LTS is that of having uncountably
many states, as any of these states essentially corresponds to a pair composed
of a TA/PTA state and a vector of clock values each taken from R≥0.

A more recent extension is constituted by Markov automata (MA) [7], in
which the probabilistic flavor of PTA transitions is retained, while temporal as-
pects are described through exponentially distributed random variables rather
than deterministic quantities. Since exponential distributions enjoy the memo-
ryless property, an MA no longer needs clocks and hence can be directly viewed
as a variant of LTS whose states correspond to the MA states.
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In order to emphasize similarities and differences among the various models,
in this paper we provide a unifying view of TA, PTA, and MA by encoding all
of them as uniform labeled transition systems (ULTraS) [4]. This is a recently
developed framework that has proven to be well suited for uniformly representing
different models – ranging from LTS models to discrete-/continuous-time Markov
chains and Markov decision processes without/with internal nondeterminism –
together with their behavioral equivalences.

The paper is organized as follows. In Sect. 2, we recall the notion of ULTraS
and we extend it in order to deal with uncountable state spaces. In Sect. 3, we
encode as ULTraS the variant of LTS underlying TA and we show that the
corresponding bisimilarity in [16, 20] coincides with a suitable instance of the
bisimilarity for ULTraS. In Sect. 4, we reuse the same encoding to handle TA.
In Sect. 5, we encode as ULTraS the variant of LTS underlying PTA and we
show that two different bisimilarities can be defined: the one in [19] and a new
one for which we exhibit a modal logic characterization. In Sects. 6 and 7, we
reuse almost the same encoding to handle PTA and MA, respectively. Finally,
in Sect. 8 we draw some conclusions about the considered timed models.

2 Revisiting the Definition of ULTraS

The definition of ULTraS given in [4] was based on a set of states and a set of
transition-labeling actions that are at most countable. When dealing with TA
and PTA models whose time domain is R≥0, the underlying LTS models turn
out to have uncountably many states and actions. Therefore, we need to extend
the definition of ULTraS by admitting uncountable sets of states and actions,
in a way that preserves the results in [4].

Every ULTraS is parameterized with respect to a set D, whose values are
interpreted as different degrees of one-step reachability, and a preorder vD
equipped with minimum ⊥D, which denotes unreachability. In this paper, we
consider the set [S → D]cs of countable-support functions from a set S to D, i.e.,
the set of functions D : S → D whose support supp(D) = {s ∈ S | D(s) 6= ⊥D}
is at most countable. As in [4], when S is a set of states, every element D of
[S → D]cs is interpreted as a next-state distribution function and supp(D) rep-
resents the set of reachable states.

Definition 1. Let (D,vD,⊥D) be a preordered set equipped with a minimum.
A uniform labeled transition system on (D,vD,⊥D), or D-ULTraS for short,
is a triple U = (S,A,−→) where S is a possibly uncountable set of states, A is a
possibly uncountable set of actions, and −→ ⊆ S×A× [S → D]cs is a transition
relation. We say that the D-ULTraS U is functional iff −→ is a total function
from S ×A to [S → D]cs.

Every transition (s, a,D) is written s
a−→D, where D(s′) is a D-value quan-

tifying the degree of reachability of s′ from s via that transition and D(s′) = ⊥D
means that s′ is not reachable with that transition. If the D-ULTraS is func-
tional, we shall write Ds,a(s′) to denote the same D-value.



A D-ULTraS can be depicted as a directed graph-like structure in which
vertices represent states and action-labeled edges represent action-labeled tran-
sitions. Given a transition s

a−→D, the corresponding a-labeled edge goes from
the vertex representing s to a set of vertices linked by a dashed line, each of which
represents a state s′ ∈ supp(D) and is labeled with D(s′). Should D(s′) = ⊥D for
all states s′ – which may happen when the considered D-ULTraS is functional –
the transition would not be depicted at all. A B-ULTraS is shown on the right-
hand side of Fig. 1, where B = {⊥,>} is the support set of the Boolean algebra,
⊥ (false) denotes unreachability, > (true) denotes reachability, and ⊥ vB >.

In [4], various equivalences were defined over ULTraS and shown to coin-
cide in most cases with those appeared in the literature of nondeterministic,
probabilistic, stochastic, and mixed models. Since in this paper we focus on
bisimilarity, we shall recall only the definition of bisimilarity for ULTraS. This
definition, like the one of the other equivalences, is parameterized with respect
to a measure function that expresses the degree of multi-step reachability of a set
of states in terms of values taken from a preordered set equipped with minimum.
In the following, we call trace an element α of A∗ and we denote by ε the empty
trace, by “| |” the operation that computes the length of a trace, and by “ ◦ ”
the operation that concatenates two traces.

Definition 2. Let U=(S,A,−→) be a D-ULTraS, n ∈ N, si ∈ S for 0 ≤ i ≤ n,

and ai ∈ A for 1 ≤ i ≤ n. We say that s0
a1
−7→ s1

a2
−7→ s2 . . . sn−1

an
−7→ sn is a

computation of U of length n that goes from s0 to sn and is labeled with trace
a1 a2 . . . an iff for all i = 1, . . . , n there exists a transition si−1

ai−→Di such that
si ∈ supp(Di).

Definition 3. Let U = (S,A,−→) be a D-ULTraS and (M,vM ,⊥M ) be a
preordered set equipped with a minimum. A measure function on (M,vM ,⊥M )
for U , or M -measure function for U , is a functionMM : S×A∗×2S →M such
that the value of MM (s, α, S′) is defined by induction on |α| and depends only
on the reachability of a state in S′ from state s through computations labeled
with trace α.

Definition 4. Let U = (S,A,−→) be a D-ULTraS andMM be an M -measure
function for U . An equivalence relation B over S is an MM -bisimulation iff,
whenever (s1, s2) ∈ B, then for all actions a ∈ A and groups of equivalence
classes G ∈ 2S/B it holds that:

MM (s1, a,
⋃
G) = MM (s2, a,

⋃
G)

where
⋃
G is the union of all the equivalence classes in G. We say that s1, s2 ∈ S

are MM -bisimilar, written s1 ∼B,MM
s2, iff there exists an MM -bisimulation

B over S such that (s1, s2) ∈ B.

The preordered structure (M,vM ,⊥M ) for multi-step reachability used in
the definition of the equivalence does not necessarily coincide with the preordered
structure (D,vD,⊥D) for one-step reachability used in the definition of the
model. In [4], various cases were illustrated that demonstrate the necessity of
keeping the two structures separate to retrieve certain equivalences.



The definition of bisimilarity is given in the style of [14], i.e., it requires
a bisimulation to be an equivalence relation. However, it deals with arbitrary
groups of equivalence classes rather than only with individual equivalence classes.
As shown in [4], working with groups of equivalence classes provides an adequate
support to models in which nondeterminism and quantitative aspects coexist. In
particular, it gives rise to new probabilistic bisimulation equivalences that have
interesting logical characterizations (see the references in [4]).

3 Encoding Timed LTS Models

Timed processes can be represented as models enriched with timing information.
Following the orthogonal-time approach1 of [16], we consider an extension of LTS
called timed labeled transition system (TLTS). In this model, functional aspects
(i.e., process activities assumed to be instantaneous) are separate from temporal
aspects (i.e., time passing) by means of two distinct transition relations: one
labeled with actions and the other labeled with amounts of time. Since we are
interested in TLTS models obtained from TA, we shall consider R≥0 as time
domain and allow for uncountably many states and actions.

Definition 5. A timed labeled transition system (TLTS) is a quadruple (S,A,
−→,;) where S is a possibly uncountable set of states, A is a possibly uncount-
able set of actions, and:

– −→ ⊆ S ×A× S is an action-transition relation such that for all s ∈ S and
a ∈ A it holds that {s′ ∈ S | (s, a, s′) ∈ −→} is at most countable.

– ; ⊆ S × R≥0 × S is a time-transition relation satisfying (s, 0, s) ∈ ;

[0-delay], (s, t, s′1) ∈; ∧ (s, t, s′2) ∈; =⇒ s′1 = s′2 [time determinism], and
(s, t1, s

′) ∈; ∧ (s′, t2, s
′′) ∈; =⇒ (s, t1 + t2, s

′′) ∈; [time additivity].

Every action-transition (s, a, s′) is written s
a−→ s′ and means that s can

reach s′ by executing action a, whilst every time-transition (s, t, s′) is written

s
t
; s′ and means that s can evolve into s′ after an amount of time equal to t.

Following [20], we can merge the two transition relations into a single one by
adding a special time-elapsing action ε(t) for every t ∈ R≥0. With this in mind,
it is immediate to see that a TLTS can be encoded as a functional B-ULTraS.

Definition 6. Let (S,A,−→,;) be a TLTS. Its corresponding functional
B-ULTraS U = (S,AU ,−→U ) is defined by letting:

– AU = A ∪ {ε(t) | t ∈ R≥0}.
– s

a−→U Ds,a for all s ∈ S and a ∈ AU .

– Ds,a(s′) =

{
> if a ∈ A and s

a−→ s′, or a = ε(t) and s
t
; s′

⊥ otherwise
for all s′ ∈ S.

1 As opposed to the integrated-time approach, in which process activities are assumed
to be durational: see [6, 3] for an overview of both approaches in different settings.
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Fig. 1. Translation of a TLTS exhibiting both external and internal nondeterminism

If a TLTS state has a certain number of differently labeled outgoing action-
transitions, then those transitions are retained in the corresponding functional
B-ULTraS. In other words, external nondeterminism in the original model is
preserved by the resulting model. In contrast, internal nondeterminism is en-
coded within the target countable-support functions of the transitions of the
resulting model. Indeed, if a TLTS state has several identically labeled outgo-
ing action-transitions, then a single transition is generated in the corresponding
functional B-ULTraS, in which several states are assigned > as reachability
value. The encoding of both forms of nondeterminism is exemplified in Fig. 1.

A notion of bisimilarity for timed processes was introduced in [16, 20], where
the congruence property and an equational characterization were also studied.
The decidability of timed bisimilarity was established in [5].

Definition 7. Let (S,A,−→,;) be a TLTS. A relation B over S is a timed
bisimulation iff, whenever (s1, s2) ∈ B, then for all actions a ∈ A and amounts
of time t ∈ R≥0 it holds that:

– For each s1
a−→ s′1 (resp. s2

a−→ s′2) there exists s2
a−→ s′2 (resp. s1

a−→ s′1)
such that (s′1, s

′
2) ∈ B.

– For each s1
t
; s′1 (resp. s2

t
; s′2) there exists s2

t
; s′2 (resp. s1

t
; s′1) such

that (s′1, s
′
2) ∈ B.

We say that s1, s2 ∈ S are timed bisimilar, written s1 ∼TB s2, iff there exists a
timed bisimulation B over S such that (s1, s2) ∈ B.

Timed bisimilarity over TLTS models is captured by ∼B,MB over the corre-
sponding functional B-ULTraS models, where measure function MB is defined
in Table 1. When α = a ◦ α′, the measure function considers each possible next
state s′ by examining whether it is reachable from s via a (Ds,a(s′)) and it can
reach a state in S′ via α′ (MB(s′, α′, S′)). If this is the case for at least one of the
possible next states s′, thenMB(s, α, S′) = >, otherwiseMB(s, α, S′) = ⊥. Note
that, for TLTS models, the preordered structure of the corresponding ULTraS
models coincides with the preordered structure of the measure function.

Theorem 1. Let (S,A,−→,;) be a TLTS and U = (S,AU ,−→U ) be the cor-
responding functional B-ULTraS. For all s1, s2 ∈ S:

s1 ∼TB s2 ⇐⇒ s1 ∼B,MB s2



MB(s, α, S′) =


∨

s′∈S
Ds,a(s′) ∧MB(s′, α′, S′) if α = a ◦ α′

> if α = ε and s ∈ S′

⊥ if α = ε and s /∈ S′

Table 1. Measure function for functional B-ULTraS models representing TLTS models

4 Encoding Timed Automata

Timed automata (TA) [1] extend classical automata by introducing clock vari-
ables, or simply clocks, that measure the passage of time. They all advance at
the same speed and take values in R≥0. A clock valuation ν ∈ VX over a finite
set of clocks X is a total function from X to R≥0. Given a valuation ν and a
delay t ∈ R≥0, we let ν + t denote the valuation mapping each clock x ∈ X into
ν(x) + t. A reset γ is a set of clocks in X whose value is set back to zero. For a
valuation ν and a reset γ, we let ν\γ(x) = 0 if x ∈ γ and ν\γ(x) = ν(x) if x 6∈ γ.

In TA, time elapses in states, called locations, as long as invariant conditions
associated with the locations themselves hold. These are constraints on the values
of the clocks through which notions such as urgency or laziness of actions can
be expressed [9]. In contrast, the execution of an action transition is considered
instantaneous. Transitions are guarded, i.e., enabled/disabled, by constraints on
the values of the clocks, and can reset the value of some clocks.

The set ΨX of clock constraints over a finite set of clocks X is defined by the
following grammar: ψ ::= x # c | ψ ∧ ψ where x ∈ X , c ∈ N, and # ∈ {<,>,≤,
≥,=}. Clock constraints are assessed over clock valuations. The satisfaction of
a clock constraint ψ by a valuation ν, denoted by ν |= ψ, is defined as follows:
(i) ν |= x # c iff ν(x) # c, (ii) ν |= ψ1 ∧ ψ2 iff ν |= ψ1 and ν |= ψ2. The given
syntax for constraints is minimal; the so-called diagonal clock constraints of the
form x− y # c can be simulated by using more locations and the constraints of
the given form [2]. An invariant condition is a clock constraint with the property
of being past-closed, i.e., for all valuations ν and delays t ∈ R≥0 it holds that
ν + t |= ψ =⇒ ν |= ψ.

Definition 8. A timed automaton (TA) is a tuple (L,A,X , I,−→) where L
is a finite set of locations, A is a set of actions, X is a finite set of clocks,
I is a function mapping each location into an invariant condition, and −→ ⊆
L× ΨX ×A× 2X × L is a transition relation.

Every transition is written `
ψ,a,γ−→ `′ where ` is the source location, ψ is the

guard, a is the action label, γ is the clock reset, and `′ is the target location.
The semantics of a TA is given in terms of a TLTS. Thus, it is natural to

encode a TA as a functional B-ULTraS generated by using the same conditions
defining the TA semantics.

Definition 9. Let (L,A,X , I,−→) be a TA. Its corresponding functional
B-ULTraS U = (S,AU ,−→U ) is defined by letting:



– S = {(`, ν) ∈ L× VX | ν |= I(`)}.
– AU = A ∪ {ε(t) | t ∈ R≥0}.
– (`, ν)

a−→U D(`,ν),a for all (`, ν) ∈ S and a ∈ AU .

– D(`,ν),a(`′, ν′) =

> if a ∈ A, `
ψ,a,γ−→ `′, ν |= ψ, ν′ = ν\γ, ν′ |= I(`′)

> if a = ε(t), `′ = `, ν′ = ν + t, ν′ |= I(`′)
⊥ otherwise

for all (`′, ν′) ∈ S.

Timed bisimilarity over TA models is defined in terms of the underlying
TLTS models. Therefore, we can reuse both Def. 7 and Table 1, so that Thm. 1
also applies to functional B-ULTraS models corresponding to TA models.

5 Encoding Probabilistic Timed LTS Models

A probabilistic extension of the TLTS model (PTLTS) was introduced in [19].
Following the simple probabilistic automaton model of [18], the action-transition
relation is transformed into a probabilistic action-transition relation. This means
that a PTLTS action transition, instead of leading to a single target state, has
a probability distribution over target states assigning each such state the prob-
ability of being reached. Therefore, the choice among several outgoing action
transitions from the same state is nondeterministic, whereas the choice of the
target state for the selected transition is probabilistic. Given a possibly uncount-
able set S, we denote by Distr cs(S) the set of probability distributions D over S
whose support supp(D) = {s ∈ S | D(s) > 0} is at most countable.

While in [19] there is a single transition relation and hence each transition is
also labeled with the duration of the corresponding action, here we stick to the
orthogonal-time approach and hence keep using two transition relations: a prob-
abilistic one labeled with actions and a deterministic one labeled with amounts
of time. We prefer to do so for two reasons. Firstly, this allows us to use a consis-
tent notation and model structure throughout the paper. Secondly, separating
functional aspects from time aspects simplifies the development of weak behav-
ioral equivalences, as has been shown in the deterministic time case [20, 17, 13]
and in the stochastic time case [10, 7].

Definition 10. A probabilistic timed labeled transition system (PTLTS) is a
quadruple (S,A,−→,;) where S is a possibly uncountable set of states, A is a
possibly uncountable set of actions, and:

– −→ ⊆ S ×A×Distr cs(S) is a probabilistic action-transition relation.
– ; ⊆ S × R≥0 × S is a time-transition relation satisfying 0-delay, time de-

terminism, and time additivity.

Every action-transition (s, a,D) is written s
a−→D – which is already in the

ULTraS transition format – whilst every time-transition (s, t, s′) is written

s
t
; s′. As in the TLTS case, we can merge the two transition relations into a sin-

gle one by adding a special time-elapsing action ε(t) for every t ∈ R≥0, such that
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Fig. 2. Translation of a PTLTS exhibiting both external and internal nondeterminism

the target distributions of the transitions labeled with such actions concentrate
all the probability mass into a single state. At this point, it is straightforward
to encode a PTLTS as an R[0,1]-ULTraS, which relies on the usual ordering
for real numbers – with 0 denoting unreachability – and is not necessarily func-
tional due to the coexistence of probability and internal nondeterminism [4]. In
the following, given s ∈ S we denote by δs the Dirac distribution for s, where
δs(s) = 1 and δs(s

′) = 0 for all s′ ∈ S \ {s}.

Definition 11. Let (S,A,−→,;) be a PTLTS. Its corresponding R[0,1]-ULTraS
U = (S,AU ,−→U ) is defined by letting:

– AU = A ∪ {ε(t) | t ∈ R≥0}.
– s

a−→U D for each s
a−→D.

– s
ε(t)−→U δs′ for each s

t
; s′.

Different from the TLTS encoding, both external nondeterminism and inter-
nal nondeterminism in the original PTLTS are preserved in the corresponding
R[0,1]-ULTraS. This is exemplified in Fig. 2.

A notion of bisimilarity for probabilistic timed processes was introduced
in [19], where a modal logic characterization and a decision procedure were also
studied. Below, we reformulate the definition in the orthogonal-time framework
and we let D(C) =

∑
s∈C D(s) for D ∈ Distr cs(S) and C ⊆ S.

Definition 12. Let (S,A,−→,;) be a PTLTS. An equivalence relation B over S
is a probabilistic timed bisimulation iff, whenever (s1, s2) ∈ B, then for all ac-
tions a ∈ A and amounts of time t ∈ R≥0 it holds that:

– For each s1
a−→D1 there exists s2

a−→D2 such that for all equivalence classes
C ∈ S/B it holds that D1(C) = D2(C).

– For each s1
t
; s′1 there exists s2

t
; s′2 such that (s′1, s

′
2) ∈ B.

We say that s1, s2 ∈ S are probabilistic timed bisimilar, written s1 ∼PTB s2, iff
there exists a probabilistic timed bisimulation B over S such that (s1, s2) ∈ B.

It is relatively easy to see that the relation ∼PTB coincides with the following
bisimulation equivalence defined over R[0,1]-ULTraS models corresponding to



M
2.
R[0,1] (s, α, S

′) =



⋃
s
a−→D

{
∑

s′∈S
D(s′) · ps′ | ps′ ∈M2.

R[0,1] (s
′, α′, S′)}

if α = a ◦ α′ and there exists s
a−→D

{1} if α = ε and s ∈ S′

{0} if α = a ◦ α′ and there is no s
a−→D

or α = ε and s /∈ S′

Table 2. Measure function for R[0,1]-ULTraS models representing PTLTS models

PTLTS models. The equivalence below is called group-distribution bisimilarity
because it compares entire distributions of reaching groups of equivalence classes.
Given two related states, for each transition of one of the two states there must
exist an equally labeled transition of the other state such that, for every group of
equivalence classes, the two transitions have the same probability of reaching a
state in that group. In other words, the two transitions must be fully matching,
i.e., they must match with respect to all groups.

Definition 13. Let U = (S,AU ,−→U ) be the R[0,1]-ULTraS corresponding to a
PTLTS (S,A,−→,;). An equivalence relation B over S is a probabilistic timed
group-distribution bisimulation iff, whenever (s1, s2) ∈ B, then for all actions
a ∈ AU it holds that:

– For each s1
a−→U D1 there exists s2

a−→U D2 such that for all groups of

equivalence classes G ∈ 2S/B it holds that D1(
⋃
G) = D2(

⋃
G).

We say that s1, s2 ∈ S are probabilistic timed group-distribution bisimilar, writ-
ten s1 ∼PTB,dis s2, iff there exists a probabilistic timed group-distribution bisim-
ulation B over S such that (s1, s2) ∈ B.

Theorem 2. Let (S,A,−→,;) be a PTLTS and U = (S,AU ,−→U ) be the
corresponding R[0,1]-ULTraS. For all s1, s2 ∈ S:

s1 ∼PTB s2 ⇐⇒ s1 ∼PTB,dis s2

The relation ∼PTB over PTLTS models has been expressed as ∼PTB,dis in
the ULTraS setting, but cannot be captured by any instantiation of the gen-
eral bisimilarity for ULTraS given in Def. 4. In the case of probabilistic timed
processes, a natural measure function is the one defined in Table 2. Denoting
by 2.R[0,1] the set of nonempty subsets of R[0,1], this measure function associates

a suitable element of 2.R[0,1] with every triple composed of a source state s, a
trace α, and a set of destination states S′. The setM

2.
R[0,1] (s, α, S

′) contains for
each possible way of resolving nondeterminism the probability of performing a
computation that is labeled with trace α and leads to a state in S′ from state s.
It is worth pointing out that, while the considered ULTraS models are based on
the preordered structure (R[0,1],≤, 0), the measure function relies on the differ-

ent preordered structure (2.R[0,1] ,v, {0}) where R1 v R2 means inf R1 ≤ inf R2

and |R1| ≤ |R2| (the latter condition ensures {0} being the minimum).
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The resulting bisimilarity ∼B,M
2.
R[0,1]

captures the following equivalence that

we call group-by-group bisimilarity because it considers a single group of equiv-
alence classes at a time. Technically speaking, this amounts to anticipating the
quantification over groups (underlined in Def. 13) with respect to the quantifica-
tion over transitions. In this way, a transition departing from one of two related
states is allowed to be matched, with respect to the probabilities of reaching
different groups, by several different transitions departing from the other state.
In other words, partially matching transitions are allowed.

Definition 14. Let U = (S,AU ,−→U ) be the R[0,1]-ULTraS corresponding to
a PTLTS (S,A,−→,;). An equivalence relation B over S is a probabilistic
timed group-by-group bisimulation iff, whenever (s1, s2) ∈ B, then for all actions
a ∈ AU and for all groups of equivalence classes G ∈ 2S/B it holds that:

– For each s1
a−→U D1 there exists s2

a−→U D2 such that D1(
⋃
G) = D2(

⋃
G).

We say that s1, s2 ∈ S are probabilistic timed group-by-group bisimilar, written
s1 ∼PTB,gbg s2, iff there exists a probabilistic timed group-by-group bisimulation
B over S such that (s1, s2) ∈ B.

Theorem 3. Let U = (S,AU ,−→U ) be the R[0,1]-ULTraS corresponding to a
PTLTS (S,A,−→,;). For all s1, s2 ∈ S:

s1 ∼PTB,gbg s2 ⇐⇒ s1 ∼B,M
2.
R[0,1]

s2

In presence of internal nondeterminism, ∼PTB,gbg strictly contains ∼PTB,dis,
as shown in Fig. 3. Indicating states with the actions they enable, it holds
that s1 6∼PTB,dis s2 because the group distribution of the leftmost a-transition
of s1 – which assigns probability 1 to each group containing both the ε(t1)-
state and the ε(t2)-state, probability 0.4 to each group containing the ε(t1)-state
but not the ε(t2)-state, probability 0.6 to each group containing the ε(t2)-state
but not the ε(t1)-state, and probability 0 to any other group – is not matched
by the group distribution of any of the three a-transitions of s2. In contrast,
s1 ∼PTB,gbg s2. For instance, the leftmost a-transition of s1 is matched by the
leftmost a-transition of s2 with respect to every group containing both the ε(t1)-
state and the ε(t2)-state, the central a-transition of s2 with respect to every
group containing the ε(t1)-state but not the ε(t2)-state, and the rightmost a-
transition of s2 with respect to every group containing the ε(t2)-state but not
the ε(t1)-state.



Theorem 4. Let U = (S,AU ,−→U ) be the R[0,1]-ULTraS corresponding to a
PTLTS (S,A,−→,;). For all s1, s2 ∈ S:

s1 ∼PTB,dis s2 =⇒ s1 ∼PTB,gbg s2

We conclude by exhibiting a modal logic characterization of ∼PTB,gbg (and
hence of ∼B,M

2.
R[0,1]

). Unlike the characterization of ∼PTB (i.e., ∼PTB,dis) pro-

vided in [19], which relies on an expressive probabilistic extension of HML [8]
interpreted over state distributions, here it is sufficient to consider the interval-
based variant IPML of the probabilistic modal logic in [14] with the following
syntax: φ ::= true | ¬φ | φ∧φ | 〈a〉[p1,p2]φ where a ∈ AU and p1, p2 ∈ R[0,1] such
that p1 ≤ p2. A state s ∈ S belongs to the setM[[〈a〉[p1,p2]φ]] of states satisfying

〈a〉[p1,p2]φ iff there exists s
a−→U D such that p1 ≤ D(M[[φ]]) ≤ p2.

Theorem 5. Let U = (S,AU ,−→U ) be the R[0,1]-ULTraS corresponding to
a PTLTS (S,A,−→,;). For all s1, s2 ∈ S it holds that s1 ∼PTB,gbg s2 iff
s1 and s2 satisfy the same formulae of IPML.

6 Encoding Probabilistic Timed Automata

Probabilistic timed automata (PTA) [12] extend TA with probabilities. While
the passage of time remains deterministic, the target of each action transition
becomes a probability distribution. The approach is exactly the one described
in Sect. 5 for moving from TLTS models to PTLTS models.

Definition 15. A probabilistic timed automaton (PTA) is a tuple (L,A,X , I,
−→) where L is a finite set of locations, A is a set of actions, X is a finite set
of clocks, I is a function mapping each location into an invariant condition, and
−→ ⊆ L× ΨX ×A×Distr cs(2

X × L) is a transition relation.

Every transition is written `
ψ,a−→D where D is the probability distribution

assigning each pair (γ, `′) the probability of being reached via that transition.
Like for TA, the semantics of a PTA is given in terms of a PTLTS. Following

the same approach used in Sect. 4, we thus encode a PTA as an R[0,1]-ULTraS
generated by using the same conditions defining the PTA semantics.

Definition 16. Let (L,A,X , I,−→) be a PTA. Its corresponding R[0,1]-ULTraS
U = (S,AU ,−→U ) is defined by letting:

– S = {(`, ν) ∈ L× VX | ν |= I(`)}.
– AU = A ∪ {ε(t) | t ∈ R≥0}.
– (`, ν)

a−→U D for each `
ψ,a−→D′ such that ν |= ψ, where for all (`′, ν′) ∈ S

D(`′, ν′) =
∑
γ∈reset(ν,ν′)D′(γ, `′) with reset(ν, ν′) = {γ ∈ 2X | ν\γ = ν′}.

– (`, ν)
ε(t)−→U δ(`′,ν′) for `′ = `, ν′ = ν + t, ν′ |= I(`′).

Similar to TA models, probabilistic timed bisimilarity over PTA models is
defined in terms of the underlying PTLTS models. Therefore, we can reuse
Defs. 12, 13, and 14 as well as Table 2, so that Thms. 2, 3, 4, and 5 also apply to
R[0,1]-ULTraS corresponding to PTA models.



7 Encoding Markov Automata

So far, we have considered timed models in which temporal aspects are described
as fixed amounts of time. In other words, in these models the passage of time is
represented deterministically. However, in many situations there are fluctuations
in the time that elapses between instantaneous activities. When these fluctua-
tions are quantifiable, the passage of time can be represented stochastically.

Due to the simplicity of their mathematical treatment, exponentially dis-
tributed random variables are mostly used for a stochastic representation of time.
Given one such variable X with parameter λ ∈ R>0, the probability that a du-
ration sampled from X is at most t ∈ R≥0 is given by Pr{X ≤ t} = 1 − e−λ·t.
The parameter λ is said the rate of X; its reciprocal is the expected value of X.

If several alternative exponentially distributed delays can elapse from a state,
the race policy is adopted; the delay that elapses is the one sampling the least
duration. It can be shown that the following property RP holds in that state:
the sojourn time is exponentially distributed with rate given by the sum of the
rates of the various delays, with the probability of selecting each such delay being
proportional to its rate.

The recently introduced model of Markov automata (MA) [7] can be viewed
as a variant of PTA models in which time passing is described through expo-
nentially distributed random variables. An important property of any of these
variables is that it enjoys the memoryless property ; even if we know that a cer-
tain amount of time has already elapsed, the residual time is still quantified by
the same exponentially distributed random variable. As a consequence, in this
setting there is no need for clocks and hence Markov automata can actually
be viewed as a variant of PTLTS models, with exponentially distributed delays
(uniquely identified by their rates) in place of deterministic delays.

Definition 17. A Markov automaton (MA) is a quadruple (S,A,−→,;) where
S is a possibly uncountable set of states, A is a possibly uncountable set of ac-
tions, and:

– −→ ⊆ S ×A×Distr cs(S) is a probabilistic action-transition relation.
– ; ⊆ S × R>0 × S is a bounded time-transition relation, i.e., for all s ∈ S

it holds that {s′ ∈ S | ∃λ ∈ R>0. (s, λ, s
′) ∈ ; } is at most countable and∑

(s,λ,s′)∈; λ <∞.

Similar to the PTLTS case, every action-transition (s, a,D) is written s
a−→D,

every time-transition (s, λ, s′) is written s
λ
; s′, and we can merge the two tran-

sition relations into a single one by adding a special time-elapsing action ε(λ) for
every λ ∈ R>0. Following the transformation sketched in [7], it is straightforward
to encode an MA as a not necessarily functional R[0,1]-ULTraS, in which the
race policy is represented based on RP. For each state having outgoing time-
transitions, we generate a single time-elapsing transition – instead of one such
transition for each original delay – such that its rate λ is the sum of the rates
identifying the original delays and its target distribution assigns to every state
a probability proportional to the rate at which that state can be reached.
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Fig. 4. Translation of an MA (λ = λ1 + λ2, p1 = λ1/λ, p2 = λ2/λ)

Definition 18. Let (S,A,−→,;) be an MA. Its corresponding R[0,1]-ULTraS
U = (S,AU ,−→U ) is defined by letting:

– AU = A ∪ {ε(λ) | λ ∈ R>0}.
– s

a−→U D for each s
a−→D.

– s
ε(λ)−→U D for all s ∈ S having outgoing time-transitions, where λ =

∑
s
λ′
; s′

λ′

and D(s′) =
∑
s
λ′
; s′

λ′/λ for all s′ ∈ S.

Nondeterministic choices over actions, probabilistic choices over states, and
the race policy for exponentially distributed delays in the original MA are pre-
served in the corresponding R[0,1]-ULTraS. This is exemplified in Fig. 4.

A notion of bisimilarity for probabilistic exponentially-timed processes was
introduced in [7]. Below, we reformulate the definition in terms of the two distinct
transition relations.

Definition 19. Let (S,A,−→,;) be an MA. An equivalence relation B over S
is a probabilistic exponentially-timed bisimulation iff, whenever (s1, s2) ∈ B,
then for all actions a ∈ A and rates λ ∈ R>0 it holds that:

– For each s1
a−→D1 there exists s2

a−→D2 such that for all equivalence classes
C ∈ S/B it holds that D1(C) = D2(C).

– If s1 has outgoing time-transitions, then s2 has outgoing time-transitions too
and for all equivalence classes C ∈ S/B it holds that:∑

s1
λ
; s′1∈C

λ =
∑
s2

λ
; s′2∈C

λ

We say that s1, s2 ∈ S are probabilistic exponentially-timed bisimilar, written
s1 ∼PEB s2, iff there exists a probabilistic exponentially-timed bisimulation B
over S such that (s1, s2) ∈ B.

The relation ∼PEB over MA models coincides with the relation ∼PTB,dis over
R[0,1]-ULTraS models given in Def. 13. As a consequence, all the subsequent def-
initions and results in Sect. 5 also apply to R[0,1]-ULTraS models corresponding
to MA models.

Theorem 6. Let (S,A,−→,;) be an MA and U = (S,AU ,−→U ) be the corre-
sponding R[0,1]-ULTraS. For all s1, s2 ∈ S:

s1 ∼PEB s2 ⇐⇒ s1 ∼PTB,dis s2



8 Discussion and Conclusions

In this paper, widely used timed models such as TA [1] (together with their
underlying semantic model TLTS), PTA [12] (with their underlying PTLTS),
and MA [7] have been put in a unifying view by encoding them in the ULTraS
framework [4] and by examining their bisimulation semantics [16, 20, 19, 7].

As immediate results of this work, we have been able to re-obtain the al-
ready existing timed bisimilarities and, most notably, to give new contributions.
In particular, by naturally instantiating the ULTraS general bisimilarity defi-
nition to the case of deterministically timed models – i.e., TLTS and TA – we
have retrieved the same timed bisimilarity introduced in the literature (Thm. 1).
Instead, when time is mixed with probability – i.e., for PTLTS, PTA, and MA
models – we have found that the bisimilarities present in the literature, although
expressible within the ULTraS framework (Thms. 2 and 6), are different from
the one that can be naturally obtained from ULTraS. This has led us to intro-
duce a new bisimilarity for those models (Def. 14 and Thm. 3), which we have
called group-by-group and shown to be coarser than the original one (Thm. 4).
Moreover, we have exhibited a modal logic characterization for the group-by-
group bisimilarity by using an interval-based variant of the logic in [14] (Thm. 5),
while the original bisimilarity needs a much more expressive logic [19].

The ULTraS-based encodings permit also more general considerations about
the studied models. Firstly, the transition relation of the ULTraS corresponding
to a TA is functional and based on B, whilst in the case of a PTA/MA it is not a
function (because internal nondeterminism cannot be mixed with probabilities in
the target state distributions of transitions) and it is necessarily based on R[0,1].
This stresses the higher expressivity of PTA/MA compared to TA with regard
to describing state reachability. Furthermore, it evidences a structural analogy
between PTA and MA that has not been addressed so far in the literature.

Secondly, the quantitative information related to time in TA/PTA/MA can
be made disappear to a large extent, while quantitative information related to
probabilities in PTA/MA cannot be abstracted. This underlines an important
difference between time and probability. Time elapses independent of the occur-
rence of events and hence its passage can be viewed as an event in its own, which
can thus be represented like the other events. Probabilities, instead, are inher-
ently associated with the occurrence of events and must therefore be explicitly
represented as event attributes.

Indeed, in our encodings time passing has been represented through special
actions that encompass the duration/rate of delays. A purely qualitative rep-
resentation of time based on a single special action ε is also possible and was
used, for instance, in the construction of the region/zone graph and in the no-
tion of time-abstract bisimilarity [15]. This supports a compact description of
the state space of the ULTraS corresponding to a TA/PTA, which is uncount-
able while this is not necessarily the case for an MA. The reason is the inherent
difference between deterministic time, which needs the concrete representation
of all possible delays, and exponentially distributed time, for which a symbolic
representation based on rates is sufficient thanks to the memoryless property.



A natural continuation of our work is to investigate trace and testing equiva-
lences by applying their general definitions in [4] to the considered timed models.
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