
A Model-Prover for Constrained Dynamic Conversations

Diletta Cacciagrano
University of Camerino

Math. & Comp. Science Dep.
Camerino, Italy

diletta.cacciagrano
@unicam.it

Flavio Corradini
University of Camerino

Math. & Comp. Science Dep.
Camerino, Italy

flavio.corradini
@unicam.it

Rosario Culmone
University of Camerino

Math. & Comp. Science Dep.
Camerino, Italy

rosario.culmone
@unicam.it

Luca Tesei
University of Camerino

Math. & Comp. Science Dep.
Camerino, Italy

luca.tesei@unicam.it

Leonardo Vito
University of Camerino

Math. & Comp. Science Dep.
Camerino, Italy

leonardo.vito@unicam.it

ABSTRACT
In a service-oriented architecture, systems communicate by
exchanging messages. In this work, we propose a formal
model based on OCL-constrained UML Class diagrams and
a methodology based on Alloy Analyzer respectively for de-
scribing and verifying any first-order constrained client-server
conversations. This framework allows us to verify conversa-
tion protocol designs at a fairly detailed level and to check
first-order logic constraints on both message flows and mes-
sage contents.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]:
Client/server; D.2.1 [Software Engineering]: Methodolo-
gies; D.2.2 [Software Engineering]: Design tools and tech-
niques; D.2.4 [Software Engineering]: Software/Program
verification, Formal methods, Model checking, Validation

Keywords
Web Service, Conversations, WSDL, UML, OCL, Alloy

1. INTRODUCTION
The recent trend in Web Services is fostering a scenario

where clients perform run time queries in search of services,
services provide some given capabilities, and both systems
communicate by exchanging messages. Message passing is
a mechanism for robust and loosely coupled interactions
which, differently from traditional RPC models, is not based
on a fairly rigid request-response interaction style. The set
of related messages exchanged by multiple interacting par-
ties is called conversation; in particular, a client-server con-
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versation is a special case where only two interacting par-
ties are involved. The Web Services Description Language
(WSDL) [11] is the standard used for publishing abstract
and concrete descriptions of Web Services - including the
schemas of exchanged messages, the name and type of oper-
ations that the service exposes and some simple interaction
patterns. On the other hand, there are a multitude of spec-
ifications for describing conversation rules - [2], [9], [8] and
[10] are few examples - each of them defining a structured
language expressing (temporal, priority, etc.) relationships
between the exchanged messages.

Different models have been defined in order to specify and
verify the behavior of a service in terms of flow of exchanged
messages1 . For example, in [18] mediated composite services
specified in BPEL are verified against the design specified
using Message Sequence Chart and Finite State Process no-
tations, while in [16, 19] finite automata are augmented with
XML messages, XPath [12] expressions and boolean condi-
tions, in order to verify temporal properties of the conver-
sations of single and composite Web Services2.

2. FRAMEWORK AND METHODOLOGY
In this scenario, we propose a formal model for describing

and verifying any first-order constrained client-server con-
versation. The model is independent from the conversa-
tion language: we only assume a generic XML-based doc-
ument describing conversations and WSDL [11] describing
message schemas3. As in [17], constraints are CLiX [3] rules
(i) abling/disabling message transitions in the conversation
flow and (ii) well-typing the involved messages. The verifi-
cation procedure relies on Alloy [1], an object-oriented, first-

1In terms of flow of exchanged messages, the behavior of a
service describes the changes of its states; message-, activity-
and event-based specifications are well-known formal mod-
els, relying on different kinds of actions to change state.
2The verification framework proposed in [16, 19] is based on
SPIN [22] and inputs BPEL specifications of Web Services
translated into PROMELA, a boolean-logic based language:
for this reasons, it can only achieve partial verifications by
fixing the sizes of the input queues in the translation, and
complete verifications only under stronger conditions.
3The proposed framework also fits on a scenario in which
message templates are described by XML schemas [7].



order logic-based modeling language, equipped with an an-
alyzer providing a unique hybrid of features associated with
theorem provers as well as model checkers. At this aim, the
fully XML-based model (i.e., conversation, WSDL and CLiX
documents) is encoded into an OCL-constrained UML Class
Diagram, making possible by Alloy (i) to verify the conver-
sation design at a fairly detailed level, both on message flow
and on message contents, and (ii) to check constraint config-
urations, both generic (consistency constraints) and specific
(customized to the conversation). Modeling a conversation
as an OCL-constrained UML Class Diagram has an inter-
esting consequence: it is possible to build an incremental
verification procedure in Alloy, testing the diagram initially
equipped with only one constraint - if there exists - then en-
riching the previous diagram with one more constraint only
after a successful verification result, and so on. It follows
that the global verification procedure is partitioned in local
steps, since the successful/unsuccessful result of a phase is
associated to a well-known constraint. In the following, we
explain in detail the main key assumptions.

Linking conversation document and WSDL: We de-
note by W c the generic (XML-based) conversation docu-
ment, by Wm the WSDL document containing the templates
of any exchanged message, and by G the set of CLiX rules
constraining Wc and Wm XML-elements. Then, we state
a relationship, called stability, between Wc and Wm as fol-
lows: for each operation o in Wm, the schema associated to
each input, resp. output/fault, operation element p in o is
the schema of an inbound, resp. outbound, message type m

in Wc. Side effects of this assumption are the following: (i)
the scope of any rule in G only involves Wm operation ele-
ment schemas, and (ii) there is a syntactic match between
message XML-identifiers in Wc and operation element XML-
identifiers in Wm, making possible to rightly encode CLiX
rule into OCL constraints (and vice versa)4.

(First-order) Guarded automata and UML Class Di-
agrams: In [16, 19] it has been proved that any conversa-
tion can be modeled as a boolean guarded automaton. Our
framework is based on an extension of this model, obtained
imposing CLiX5 rules as first-order logic guards. A conver-
sation is modeled by a so-called Constraint Diagram, i.e. a
UML Class Diagram equipped with OCL [4] constraints. In-
tuitively, a Constraint Diagram is an UML specification of
the guarded automaton associated to a conversation: i) each
class represents a message type, (ii) two classes m1 and m2

are related if there is a state q and two transitions, respec-
tively labeled with m1 and incoming to q and labeled with
m2 and outgoing to q, and (iii) OCL constraints correspond
to CLiX guards.

Substantially, a Constraint Diagram is an UML specifi-
cation of a conversation on its own, i.e. without reasoning
in terms of guarded automata: to model a - both existing
and novel - conversation by a Constraint Diagram, it suf-
fices to define classes, associations and OCL constraints in
such a way that (i) each class models a message type, (ii)
associations among classes correspond to interactions involv-
ing message types associated to these classes, and (iii) con-

4It is well-known that both OCL and CLiX support first-
order logic, and that OCL can be encoded into CLiX.
5CLiX is a logical language, used both to constrain XML
documents internally and to execute inter-document checks.
It allows constraints to be described using a mixture of first-
order logic and XPath expressions.

straints are OCL formulas on class attributes, those classes
being associated to messages to constrain. The main reasons
of replacing a guarded automata-based model by an OCL-
constrained Class Diagram consist of the following points:
(i) differently from other UML models, a Class Diagram is
suitable for describing and for designing respectively exis-
tent and novel conversation protocols; (ii) it is a well-known
UML diagram which can be annotated by OCL expressions;
(iii) it is suitable to be verified by Alloy; (iv) it looks as
a suitable specification where automatically importing - in
the form of templates - OCL constraints expressing consis-
tency properties, i.e invariant for any conversation; (v) it
can express properties which first-order logic, UML with-
out OCL and OCL itself cannot. To better explain the last
point, it suffices to consider the transitive closure property:
it is well-known that it cannot be expressed in first-order
logic, and also that both UML and OCL have no transi-
tive closure operator. However, UML equipped with OCL
constraints attempts to axiomatize the transitive closure op-
erator. As a consequence, it is possible to express a simple
property stating that “any defined message type has to be
useful” - i.e. it is used in at least one conversation trace -
just introducing in CdW an empty class Start representing
an empty message, for every “initial class” - i.e. associated
to an initial message - I an association from Start to I and,
for every class X, an OCL constraint of the following form:
context X

def: tr closure: Set(Message) =

self.next->union(self.next->collect(e | e.tr closure))

inv: self in tr closure(Start)

Formalizing UML and OCL in Alloy: Formalizing UML
and OCL for the purpose of analysis and verification is a
well-known topic: consider the use of B [24], a formalization
of OCL in Isabelle/HOL [15], syntactic analyzers [5], sim-
ulators [6], compilers enabling run-time checking of specifi-
cations [23], model checkers [20] and integrations with the-
orem provers [14], the USE tool [25] implementing an in-
terpreter of OCL for run-time checking. In the framework
we propose here, the translation of UML into Alloy is fully
automatic6 thanks to UML2Alloy [13], a filter tool format-
ting UML Class Diagrams enriched with OCL constraints
as Alloy specifications. The current version of UML2Alloy
performs the translation creating a text file with the Alloy
model; the designer, which knows UML and OCL but maybe
does not have any notion about Alloy language syntax, only
needs to use the Alloy Analyzer to open the text file and
perform the analysis.

3. A MODEL FOR VALID FIRST-ORDER
CONSTRAINED CONVERSATIONS

In this section, we formally define a model for valid first-
order constrained client-server conversations, where valid is
intended w.r.t. a set of CLiX rules.

Notation 1. We denote by Wc the generic (XML-based)
document describing a client-server conversation; by Wm

the generic XML-based document containing the templates
of any Wc conversation message, and by G the set of CLiX
rules constraining Wc and Wm (message) XML elements; by
M = {mk|k ∈ [1...n], n ≥ 1} the finite set of message types
involved in Wc and described in Wm; by Mi and Mo the

6Differently from [21], where the translation is manual.



finite sets of respectively inbound and outbound message
types in M = Mi ∪Mo; by x(d) the XML schema describing
an element d.

First, we abstract from the tuple 〈Wc,Wm ,G〉, replacing
it with its guarded automaton-based representation.

Definition 1. The First-Order guarded (FOG) automaton
associated to 〈Wc,Wm ,G〉 is the tuple A=〈S,M, V, s, f, δ,G〉,
where:
i. S is a finite set of states;
ii. M = Mi ∪ Mo is as above described;
iii. V = 〈v1, ..., v|M|〉 is a vector of XML local variables,
where ∀j ∈ [1...|M |], vj is associated to mj ∈ M ;
iv. s ∈ S is the initial state and f ∈ S is the final state;
v. G = {g(q) = g(mk, 〈d1, ..., d|M|〉) CLiX rule}, such that
q ∈ S, mk ∈ M and ∀j ∈ [1...|M |], dj ∈ {d(vj(q)), λ}.
vi. δ = {(q, (l, g(q)),Q)} is a state transition relation, where
q ∈ S, Q ⊆ S, l ∈ {mi| mi ∈ Mi} ∪ {mo| mo ∈ Mo} and
g(q) ∈ G.

Message types and local variables are XML documents. Each
local variable vj in V corresponds to a message types mj in
M . ∀q ∈ S and ∀j ∈ [1...|M |], d(vj(q)) denotes the XML
document obtained enqueuing all the sent/received (until
the state q) message instances that match to the type mj .
Each transition τ ∈ δ is in one of the following two forms:
(receive-transition) τ = (q1, (mk, g(q1)), Q), where mk ∈
Mi: the transition nondeterministically changes the state
of the automaton from q1 to q2 ∈ Q, it removes the received
message instance (of type mk) from the input queue and it
updates vk in V , corresponding to mk, by the concatenation
of the received instance, in the case g(q1) holds;
(send-transition) τ = (q1, (mk, g(q1)), Q), where mk ∈ Mo:
the transition nondeterministically changes the state of the
automaton from q1 to q2 ∈ Q, it appends the sent message
instance (of type mk) to the input queue of the client and it
updates vk ∈ V , corresponding to mk, by the concatenation
of the sent instance, in the case g(q1) holds.

Definition 2. Let A = 〈S, M, V, s, f, δ,G〉 be the FOG au-
tomaton associated to 〈Wc,Wm ,G〉. Given a guard g(q) =
g(mk, 〈d1, ..., d|M|〉) ∈ G, then:

i. 〈d1, ..., d|M|〉 denotes the actual context of g(q), obtained
filtering out all the local variables such that no XML at-
tribute of theirs is involved in g(q).

ii. X (g(q)) denotes the formal context of g(q), obtained
by an XML-schema concatenation of those local variable
included in the actual context of g(q), i.e.
X (g(q)) =

⊙
j∈[1...|M|] x(mj), where x(mj) = λ if dj = λ.

Notation 2. Let Wm be a WSDL document. We denote
by Om the set of operation in Wm; for every o ∈ Om,
by pin(o) and pout(o) respectively the input and the out-
put/fault operation elements of o.

We also assume that Wc and Wm are related as follows:
for each operation o ∈ Om, for every pk ∈ pin(o) (resp.
pout(o)), for every mk ∈ Mi (resp. Mo), x(mk) = x(pk).
We formally define this kind of relationship between Wc and
Wm as follows.

Definition 3. Let A = 〈S, M, V, s, f, δ,G〉 be the FOG au-
tomaton associated to 〈Wc,Wm ,G〉, and let Wm be a WSDL
document. W = 〈A,Wm〉 is stable if and only if ∀q1 ∈ S

such that (q1, (mk1
, g1(q1)), Q1) ∈ δ:

i. ∃o ∈ Om such that pin(o) = {pk1
} and x(pk1

) = x(mk1
);

ii.∃q2 ∈ Q1, ∃h (2 ≤ h ≤ 3) s.t. (q2, (mkh
, gh(q2)), Qh) ∈ δ

iff pout(o) = {mkh
| 2 ≤ h ≤ 3} and x(pkh

) = x(mkh
).

The stability assumption (Definition 3) implies that it is
possible to use everywhere the identifier mk of message type
in place of the identifier pk of operation element, and that
both formal and actual contexts of any guard in G only in-
volve Wm operation element schemas.

Given W = 〈A, Wm〉 stable, we can built a Class Dia-
gram equipped by OCL constraints, called Constraint Dia-
gram and denoted by CdW, semantically equivalent to W,
where (i) each class corresponds to a message type, (ii) class
associations correspond to state transitions, and (iii) OCL
constraints in CdW correspond to CLiX guards in G. The
correspondence between W = 〈A, Wm〉 stable and CdW is
formally defined as follows.

Definition 4. Given W = 〈A, Wm〉 stable, the Constraint
Diagram CdW associated to W is a Class Diagram obtained
translating W by the encoding [[·]] so defined:
i. ∀o ∈ Om such that o ∼=
<operation name=‘‘O’’>

<input name=‘‘m k1’’ message=‘‘tns:m k1-Document’’/>

[<output name=“m k2” message=“tns:m k2-Document”/>]
[<fault name=“m k3” message=“tns:m k3-Document”/>]
</operation>

∀mky ∈ (pin(o) ∪ pout(o)) (1 ≤ y ≤ 3) such that mky
∼=

<message name=‘‘m ky’’>

<element=‘‘xsd-m ky:m ky-Element’’/>

</message>

and such that ∃tky such that tky
∼=

<xsd-m ky:element name=‘‘m ky-Element’’>

...

</xsd:element>

then [[mky ]] =c(m ky), where c(m ky) is the class of tky .

ii. ∀o ∈ Om:pin(o)={mk1
} and pout(o)={mkh

|2 ≤ h ≤ 3},
there exists an association between c(m 1) and c(m kh);

iii. ∀o1, o2 ∈ Om: pin(o1)={mk1
}, pout(o1)=∅ and pin(o2)=

{mk2
}, there exists an association from c(m k1) to c(m k2) if

and only if ∃q1, q2 ∈ S such that (q1, (mk1
, g1(q1)), Q1) ∈ δ,

(q2, (mk2
, g2(q2)), Q2) ∈ δ and q2 ∈ Q1;

iv. ∀o1, o2 ∈ Om : pout(o1) = {mkh
|2 ≤ h ≤ 3} and

pin(o2) = {mk1
}, there exists an association from c(m kh)

to c(m k1) iff ∃qh ∈ S s.t. (qh, (mkh
, gh(qh)), Qh) ∈ δ

(2 ≤ h ≤ 3) and ∃q1 ∈ Qh s.t. (q1, (mk1
, g1(q1)), Q1) ∈ δ.

v. For every guard g(q)=g(mk, 〈d1, ..., d|M|〉) ∈ G, then

[[g(q)]] = context
⋃

mj
[[mj ]] inv:g, where x(mj) in X(g(q))

and g is a formula semantically equivalent to g(q).

Notice that it would be also possible to start with the
design of a novel conversation in the form of Constraint Di-
agram, building from it a stable pair of XML documents.

Example 1. Suppose to project a toy authentication ser-
vice defining the following scenario: (i) the client is required
either to register by a Registration form, or to login by a
Login form; (ii) after filling a Registration form, the client
can only access to a Login one; (iii) after filling a Login form,
the client is allowed to enter the system only if either it has
already registered in a past session and login username is



RegistrationRQ

username

password

RegistrationRS

...

LoginRQ

username

password

ValidLoginRS

...

InvalidLoginRS

...

context LoginRQ inv:
self.RegistrationRS->notEmpty() &&
self.RegistrationRS.RegistrationRQ->notEmpty() implies
self.RegistrationRS.RegistrationRQ.username=self.username

context LoginRQ inv:
LoginRQ.allInstances->count(InvalidLoginRS) <= 3

0..1 0..1

RegistrationRQ RegistrationRS

RegistrationRS

LoginRS

0..1

0..1

0..1

0..1ValidLoginRS

LoginRS

0..10..1

LoginRQInvalidLoginRS

0..1 0..1

InvalidLoginRS LoginRQ

InvalidLoginRS

RegistrationRQ0..1

0..1

1

Figure 1: Constraint Diagram.

valid, or he has just filled a Registration form in the cur-
rent session and login username is valid; (iv) the allowed
max number of failed logins is 3. In terms of WSDL docu-
ment, we could define a Login operation, including LoginRQ

as inbound element, ValidLoginRS and InvalidLoginRS as
outbound elements, and a Registration operation, includ-
ing RegistrationRQ and RegistrationRS respectively as in-
bound and outbound elements. Fig.1 shows the Constraint
Diagram CdW, associated to the protocol above described,
which has to be input into UML2Alloy. The attributes of a
class correspond to the WSDL attributes of the message de-
scribed by the class itself. LoginRQ.allInstances denotes
the set of LoginRQ instances, and LoginRQ.allInstances->

count(InvalidLoginRS) denotes the number of LoginRQ in-
stances associated with InvalidLoginRS ones.
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