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Abstract

Software agents are particularly suitable for engineering models and simulations of cellular systems. In a
very natural and intuitive manner, individual software components are therein delegated to reproduce “in
silico” the behavior of individual components of alive systems at a given level of resolution. Individuals’
actions and interactions among individuals allow complex collective behavior to emerge. In this chapter we
first introduce the readers to software agents and multi-agent systems, reviewing the evolution of agent-
based modeling of biomolecular systems in the last decade. We then describe the main tools, platforms, and
methodologies available for programming societies of agents, possibly profiting also of toolkits that do not
require advanced programming skills.
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1. Introduction

A biological system can be simulated in a natural way by a society of
software agents. Actually, the goal of systems biology is that of
providing mathematical and computational models of life, ranging
from the molecular level to those of molecular complexes, cells,
tissues, organs, organisms, communities of organisms, and ecosys-
tems. Models permit analysis and simulation, aiming at reprodu-
cing “in silico” peculiar aspects of life. Among the computational
models, behavioral models are intuitively closer to the reality than
pure mathematical models. In fact, they rely on software entities
whose characteristics resemble those of individual “components” of
alive systems at some chosen resolution. The simulated behavior
and interactions of those individuals at some given level of abstrac-
tion should let emerge at higher level the properties of the
collective behavior of the individuals’ population. For instance,
building a model with interacting enzymes and metabolites
(i.e., the individuals) should let emerge biochemical kinetic laws
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of a well-mixed solution (i.e., the population) of enzymes and
metabolites. Modeling the behavior and the interactions of the
individuals in a community of organisms should reproduce their
social attitudes and rules. An effective model should allow to
“zoom-in” and “zoom-out,” letting emerge at a higher level of
abstraction the structure and properties determined by lower levels.

1.1. Software Agents

and Multi-agent

Systems

Complex software systems can be designed around autonomous
interacting components. Robin Milner suggested to call each of the
several parts of a software system as agent, with its own identity,
which persists through time (1). The name agent derives from the
Latin “agere,” to act. A software agent is definitively a piece of
software that acts for a user or for another program in a relationship
of agency. We can metaphorically think to some kind of agreement
to act on one’s behalf. Such action on behalf of implies that the
agent has the authority to decide which action (if any) is appropri-
ate. Wooldridge defined an agent as a computer system situated in
some environment and capable of autonomous, flexible action in
that environment in order to meet its design objectives (2).

The autonomy property (“autonomous agent”) implies that the
agent has the control over its internal state and over its own
behavior. A comparison between agent-based programming and
object-oriented programming (OOP) can better explain this prop-
erty. Both the methodologies permit to define an abstraction of an
“internal state.” In the case of OOP, the state encapsulated in an
object can be controlled from the software entity controlling the
object and invoking its methods. In the case of an agent, instead,
the agent itself has the full control on the state it encapsulates.

The situatedness property (“situated agent”) implies that the
agent perceives its environment through some “sensors” and is able
to act in the environment through some “actuators.” Usually sen-
sors and actuators are software ones but we can think also to robotic
agents in which they actually are physical devices. The environment
in which the agent is situated is typically dynamic, likely open,
unpredictable, and populated from other agents (i.e., multi-agent).

The flexibility property (“flexible agent”) can be declined in
different ways. A reactive agent responds in timely fashion to envi-
ronmental change. An adaptive agent responds to environmental
change according to its internal state. A proactive agent acts in
anticipation of future goals.

An additional property of agents is mobility. A mobile agent is
able to move from one to another distributed environment.

A multi-agent system (MAS) consists of a number of agents
interacting with each other in a dynamic environment (3). Agents
of a MAS will be acting with their different goals and motivations.
Furthermore, agents will require the ability to communicate, coop-
erate, and perceive other agents. A well-designed MAS is the one
that achieves a global task through the tasks of the single agents and
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their interactions. The first design step consists in decomposing a
global task into distributable subcomponents, yielding tractable
tasks for each agent. Once the agents responsible for all the differ-
ent tasks have been depicted, communication channels among
them must be established. In this way sufficient information can
be provided to each agent in order for it to achieve its task. Finally
the agents must be coordinated in a way that they cooperate on the
global task, or at the very least, in order to prevent them to pursue
conflicting strategies in trying to achieve their tasks. The funda-
mental problem, in analyzing/designing a MAS, is in determining
how the combined actions of a large number of agents lead to
“coordinated” behavior on the global task.

1.2. Agent-Based

Modeling

Biological systems are complex ones, i.e., many of their compo-
nents are coupled in a nonlinear fashion (4). They are characterized
by variables having complicated, discontinuous behaviors over
time. Furthermore, they exhibit the emergence property, i.e., com-
plex patterns do emerge from simpler interaction rules. The global
behavior of such a system can be determined by defining the lower-
level interaction rules among its components. Developing software
for agent-based systems can profit of modern software engineering
techniques, including decomposition, abstraction, and organiza-
tion. A problem can be divided into smaller, manageable subpro-
blems. Some details of a problem can be chosen to be modeled,
while others can be ignored. The relationships among the various
system components can be identified and managed. Software
agents are situated in space and time and have some properties
and some sets of local interaction rules. Though “intelligent,”
they cannot by themselves deduce the global behavior resulting
from their dynamic interactions. An agent-based system usually
evolves from the microlevel to the macrolevel. Usually agent-
based modeling (ABM) adopts a bottom-up design strategy rather
than a top-down one. Agents are commonly assumed to have well-
defined bounds and interfaces, as well as spatial and temporal
properties, including such dynamic properties as movement, veloc-
ity, acceleration, and collision. Agent-based systems also allow for
easy modification of interaction rules or behavior, as well as for
viewing agents or groups of agents at different levels of abstraction.
Modeling a system with a bottom-up approach requires that every
individual agent’s behavior be described. The greater the number
of details that go into describing the behavior of the system, the
greater is the computational power that is required to simulate the
behaviors of all constituent agents. This is a limitation in modeling
large systems using ABM (5). A reasonable approach is to provide
several levels of abstraction and granularity, which can be chosen
depending on the level of detail needed and the computational
resources available.
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In general, ABMs are a class of computational models for
simulating actions and interactions of multiple entities in an
attempt to re-create and predict the appearance of complex phe-
nomena. Modelers can observe the emergence of phenomena from
the lower level of systems to higher level. The result can sometime
be an equilibrium or an emergent pattern (e.g., cycles). Simple
behavioral and interaction rules are able to generate complex
behavior. Individual agents are usually characterized as rational,
acting in what they perceive as their interest, e.g., economic benefit
or social status, using heuristic or simple decision-making rules.
They can also experience “learning.”

ABM has been used since the 1990s, for instance, to analyze
financial and business issues, to describe social phenomena, to
model populations and ecosystems evolution, wars, epidemies
spreading, and in general to solve technological problems. Exam-
ples of applications include human organizations, consumer behav-
ior, logistic, distribution, supply chains, stock markets. Other
examples concern crowd behavior, e.g., in public places and in
emergency situations, vehicles movement and traffic congestion,
growth and decline of ancient civilizations, migrations, and social
network effects.

1.3. Review of ABM

of Cellular Systems

Computational models of cellular Computational models of cellu-
lar systems began to appear even before the rapid establishment of
systems biology. This recent—its “manifesto” (6) has been pub-
lished in 2001—multidisciplinary research area builds on the
unprecedented availability of biomolecular data (characterized by
the suffix “-omes”). The high-throughput technologies changed
the focus from the identification and analysis of a single molecule at
time (e.g., gene, protein, metabolite) to the systematic simulta-
neous characterization of whole populations of molecules (e.g.,
genome, proteome, metabolome). The systemic approach can be
applied at different levels of abstraction; therefore, considering the
nature, properties, and interaction of the entities at different levels
of the structural hierarchy of life, from molecules to ecosystems.
For instance, molecular systems biology concentrates its attention
at the molecular level taking into account metabolic networks,
signal transduction networks, and genetic regulatory networks.

Several computational approaches have been proposed to
model cellular signaling pathways (e.g., Boolean networks, Petri
nets, Artificial Neural Networks, Cellular Automata) (7). In Cellular
Automata (CA) (8) information is inherently processed in parallel.
With CA the interactions between cells or molecules can be mod-
eled in a matrix, where the state of an element of the matrix depends
on the states of neighboring elements.

Also agents permit to model a cell as a society of autonomous
agents acting in parallel. Agents communicate between them
through messages and have the “cognitive” capabilities to interact
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with the surrounding environment. In Cellulat each agent commu-
nicates with the others through the creation or modification of
signals on a shared data structure named “blackboard” (7). The
blackboard permits a very abstract representation of cellular com-
partments related to the signaling pathways, whereas the different
objects created on the blackboard represent signal molecules, acti-
vation or inhibition signals, or other elements belonging to the
intracellular medium.

Cellular systems can be generally simulated at three different
scales of resolution: the nanoscale (10�10), the mesoscale (10�8),
and the continuum or macroscale (10�3) (9). At the atomic level
(nanoscale), molecular dynamics (MD) and Brownian dynamics
(BD) are typically used to model the behavior of a limited number
of atoms over relatively short periods of time and space. MD is fully
deterministic and remarkably accurate over the short temporal and
spatial scales that are normally simulated. Because of their accuracy,
MD techniques are well suited to simulate state or conformational
changes, predict binding affinities, investigate single molecule tra-
jectory, and model stochastic or diffusive interaction between small
numbers of macromolecules. In order to model molecular events
involving large numbers of molecules or macromolecules over
extended periods of time and space, continuum approaches are
usually adopted. At the macroscale, molecules essentially lose
their discreteness and become infinitely small and infinitely numer-
ous. The system of interest can be described with ordinary (ODE)
or partial (PDE) differential equations. However not all sets of
differential equations are solvable nor are all systems suitable to
be described by differential equations. Due to their continuum
nature, the solutions to differential equation always generate
smooth curves or surfaces that fail to capture the true granularity
or stochasticity of living system. Discontinuities, state changes,
irregular geometries, or discreteness with low number of molecules
are not easily described by differential equations. Cellular systems
can be effectively and efficiently modeled at the mesoscale
(10�8–10�7 m). At that level, macromolecules can still be treated
as discrete objects occupying a defined space or volume. The possi-
bility of representing single macromolecules allows mesoscale mod-
els to display the stochasticity or granularity found in real molecular
systems. At this scale Brownian motion dominates over the other
forces and therefore significant dynamic simplification are possible,
allowing very long time scale and very large number of entities or
reaction to be modeled. Wishart et al. (9) propose to perform
mesoscale simulation by means of dynamic cellular automata
(DCA), an hybrid between the classical CA and agent systems.
DCA rely on a 2D grid to roughly resemble cell compartments.
Simulating Brownian motion and using simple pairwise interaction
rules, DCA can be used to model spatial and temporal phenomena
that include macromolecular diffusion, viscous drag, enzyme rate
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processes, metabolic reactions, and genetic circuits. SimCell (9) was
an easy-to-use graphical simulator able to model a set of molecular
components and a collection of interaction rules. The five repre-
sented components are small molecules (metabolites, ligands),
membrane proteins, soluble proteins or RNA molecules, DNA
molecules (non-mobile), and membrane (non-mobile). Mem-
branes describe boxes or borders and may be permeable or imper-
meable to certain molecules. They may be used to define cell
compartments, including the nucleus or other organelles.

Troisi et al. (10) define an agent as a computer system that
decides for itself. After sensing the environment, it takes decisions
based on some rules. ABM was applied to the theoretical problem
of molecular self-assembly. In the problem, a system evolves from a
separated to an aggregated state following a combination of sto-
chastic, deterministic, and adaptive rules. Agents are identified with
a molecule or a group of molecules. Molecules have rigid shapes
formed by four contiguous cells of a 2D square lattice. Cells can be
of three types (neutral, positive, negative) and their interactions are
nearest-neighbor only. The interactions mimic van der Walls attrac-
tion between all cell types and Coulomb repulsion/attraction
between similarly/different charged cells. The published results
show that it is possible to devise a combination of stochastic,
deterministic, and adaptive rules that lead a disordered system to
organize itself in an ordered low-energy configuration.

Using agent-based technology, Emonet et al. developed Agent-
Cell (11), a model to study the relationships between stochastic
intracellular processes and behavior of individual cells. Korobkova
et al. showed that behavioral variability of an individual cell could
be the result of the stochastic nature of molecular interactions in
molecular signaling pathways (12). Consequently, even genetically
identical cells can exhibit different behaviors. Stochastic molecular
events in signaling pathways play a significant role in single-cell
behavior. AgentCell studies how molecular noise influences the
behavior of a swimming cell in a 3D environment. The model is
able to reproduce experimental data for bacterial chemotaxis, one
of the best characterized biological system. In the model, each
bacterium is an agent equipped with its own chemotaxis network,
motors, and flagella. A piece of software (scheduler) is responsible
for stepping the system through time. Scheduling consists of
keeping a global clock, updating the clock to the next event, and
maintaining a sorted list events. Each agent inserts its own future
events inside the scheduler’s list of events.

From this flashback we may observe how the community of
cellular ABM was already trying to answer to the necessity that was
then arising in the systems biology community. ABMs, establishing
a correspondence between a population of autonomous, interact-
ing, more or less “intelligent” software components and a popula-
tion of different species of biomolecules, permit more realistic
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simulations than models based on differential equations. Phenom-
ena dictated from low numbers of molecules or arising from spatial
effects can be easily represented.

The necessity of representing space emerges as the “final fron-
tier” (13) in systems biology. Lemerle et al. underline that only at
that time the technological and theoretical advances begun to allow
the simulation of detailed kinetic models of biological systems
reflecting the stochastic movement and reactivity of individual
molecules within cellular compartments. At that time some model
specification languages like CellML (14) and SBML (15) based on
the XML markup language began to establish. SBML rapidly
became a de facto standard, permitting the interchange of models
and reproducibility of simulation on compatible simulation envir-
onments and tools. Lemerle et al. (13) consider also a number of
issues relevant to cellular simulation. The first of all is obviously
space representation. Is it continuum space supported, e.g., in
systems based on differential equation? Is space discretized, i.e.,
represented as a 2D regular lattice or as 3D voxels (“voxeliza-
tions”)? Another fundamental issue is the representation of molec-
ular entities individuals. Are species represented as concentrations,
like in ODE’s systems, or as population (i.e., numbers), or taking
into account each individual (like with agents)? Another issue con-
cerns the enabling conditions for biomolecular reactions to happen
in the simulated cellular environment. Depending on the spatial
approach adopted, the reaction can be simulated when a collision
between two suitable species is detected or when the two species are
in the same voxel (or in neighboring ones). Important issues are
also the geometry of the model and the movement itself.

Also Takahashi et al. (16) highlight the importance of a spatial
representation in systems biology. In “particle” space, molecules
are represented as individual particles with positions in a continuum
space. Particles are usually given motions according to some kind
of force equations that are numerically integrated to advance
time. Reactions are represented as collisions between particles.
“Discrete” space representation (“mesoscopic”) discretizes the
space either by subvolumes (voxels) of an identical shape (typically
cubic) or by mean of a regular lattice. Some methods allow at most
one particle to occupy a lattice site. Others allow multiple particles
to reside in a single lattice site. Detailed space representation per-
mits to deal with very important issue that otherwise cannot be
taken into account, e.g., molecular crowding. Extremely high pro-
tein density in the intracellular space can actually alter protein
activities and break down classical reaction kinetics.

A goal in biomodeling research is to understand the linkage
from molecular level events to the emerging behavior of the system
(17). This task requires having plausible, adequately detailed design
plans for how components (single and composite) at various system
levels are thought to fit and function together. Experimentation is
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then used to reconcile different design plan hypotheses. To actually
demonstrate that a design plan is functionally plausible, it is how-
ever necessary to assemble individual components according to a
design, and then show that the constructed device exhibits beha-
viors that match those observed in the original experiment. Tang
et al. (17) apply this methodology presenting a multilevel, agent-
based, model that represents the dynamics of rolling, activation,
and adhesion of individual leukocytes in vitro.

Vallurupalli and Purdy present an agent-based 3D model of
phage lambda, with its two characteristic phases: lysogenic and lytic
(4). This widely studied gene regulatory system has been modeled
using the unified modeling language (UML) and simulated using
the breve (18) 3D visualization engine. In their article it is stressed
how a complex behavior emerges from local agent interactions. The
agent approach allows also to study how individual parameters
affect overall system behavior.

Differently from Emonet et al., the model of bacterial chemo-
taxis proposed by Guo et al. (19) is a hybrid one. Biological cells are
modeled as individuals (agents) while molecules are represented by
quantities. This hybridization in entity representation entails a
combined modeling strategy with agent-based behavioral rules
and differential equations, thereby balancing the requirements of
extendible model granularity with computational tractability. In
their assay of 103 cells and about 106 molecules they are able to
produce cell migration patterns that are comparable to laboratory
observations.

A valuable issue raised by Guo and Tay (20) is that of event
scheduling. The update scheme of a MAS model refers to the
frequency of agent state updates and how these are related in
temporal order. In contrast to verifiable agent behavioral rules at
the individual level, the update scheme is a design decision made by
the model developer at the systems level that is subject to realism
and computational efficiency issues that directly affect the credibil-
ity and the usefulness of the simulation results. Usually simulation
adopts uniform time-step update scheme. Guo and Tay, in model-
ing immunological phenomena, characterized by multi-timescales,
suggest to adopt event-scheduling based asynchronous update
scheme. The scheme allows arbitrary smaller timescales for realism
and avoids unnecessary execution and delays to achieve efficiency.
In their article the application of the event-scheduling update
scheme to realistically model the B cell life cycle is presented. The
simulation results show a significantly reduced execution time (40
times faster) and also reveal the conditions where the event-
scheduling update scheme is superior.

Indeed remarkable has been the research activity on ABM of
cellular systems at the University of Sheffield. A proof-of-concept
was the Epitheliome (21), an ABM, in which there is a one-to-one
correspondence between biological cells and software agents. The
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model is able to predict the emergent behavior resulting from the
interaction of cells in epithelial tissue. There is no fixed “scaffold”
that determines the structure achieved during tissue morphogene-
sis. The organization into complex tissues and organs is an emer-
gent property of the constituent cells of an organism and of the
genes that determine the behavior of those cells. The Epitheliome
model addresses explicitly the concept of structure as an emergent
property of the interaction or “social behavior” of a large number
(106–107) of individual cells. All software development has been
carried out using object-oriented code in Mathworks MATLAB
(22). The model adopts rule-based modeling to describe cell cycle
progression and the modeled cell types are stem cells (which can
undergo growth and division, bonding, spreading, lateral migra-
tion, and apoptosis), transit amplifying cells, mitotic cells, post-
mitotic cells, and dead cells.

ABM has been then generalized to model intracellular chemical
interactions (23). It is essential that an ABM is able to deal with
individual interactions of molecule agents with the same accuracy as
reaction kinetics. The authors argue that any reasonably random
movement within an agent’s confines is sufficient for the model to
operate properly. Agents must at least move around enough to
regularly collide. The model must of course agree with the
corresponding reaction kinetics model in the circumstance where
reaction kinetics can reasonably be applied (i.e., with large numbers
of molecules of well-mixed chemicals).

The review from Walker and Southgate (24) examines
individual-based models (cellular automata or agent-based meth-
odologies) of cellular systems to explore multi-scale phenomena in
biology. Such models, where individual cells are represented as
equivalent virtual entities governed by simple rules, are inherently
extensible and can be integrated with other modeling modalities
(e.g., partial or ordinary differential equations) to model multi-
scale phenomena. Alternatively, hierarchical agent models may be
used to explore the functions of biological systems across temporal
and spatial scales.

Recently, Adra et al. (25) developed a 3D multi-scale compu-
tational model of the human epidermis which is composed of three
interacting and integrated layers: (1) an ABM which captures the
biological rules governing the cells in the human epidermis at the
cellular level and includes the rules for injury induced emergent
behaviors, (2) a COmplex PAthway SImulator (COPASI) (26)
ODE model which simulates the expression and signaling of the
transforming growth factor (TGF-b1) at the subcellular level, and
(3) a mechanical layer embodied by a numerical physical solver
responsible for resolving the forces exerted between cells at the
multicellular level.

Other recently published ABM of cellular systems concern
parasitology (evolution of Chagas disease (27)) and immunology
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(competition between lung metastases and the immune system
(28)). On the field of immunology too, an interesting recent review
on ABM related to host–pathogen interaction and disease dynamics
is that from Bauer et al. (29). The authors emphasize the well-
known feature of generating surprisingly complex and emergent
behavior from very simple rules, including periodic behaviors or
intricate spatial and temporal patterns. Nonlinearities and time-
delays are not difficult to treat empirically since they can be
incorporated into the agent’s rules or they may even emerge natu-
rally as a consequence of the system’s collective dynamics. Another
remarked advantage of ABM is that their computational structure is
inherently parallel and therefore can be implemented on parallel
computers very efficiently.

The recent advent of programming for graphical processing
units (GPU) together with the introduction of multi-core CPU
actually enabled an easier, cheaper, and resolute parallelization of
cellular simulation algorithms. In particular, GPUs do not have to
perform many of the generalized tasks that a CPU must perform
and therefore they have become highly optimized to perform
tightly coupled data-parallel processing with hundreds of indepen-
dent processor units and specialized memory addressing (30). In
the past few years GPUs have been already used for tasks such as
sequence analysis and molecular dynamics. Software toolkits like
CUDA and OpenCL have greatly eased the complexity of GPU
programming. ABM has numerous implementation challenges on
the GPU to handle dynamic agents and their interactions. The
methodology article of Christley et al. presents a pedagogical
approach to describing how methods for multicellular modeling
are efficiently implemented on the GPU. Aspects like memory
layout of data structures and functional decomposition are dis-
cussed. The authors deal also with various programmatic issues
and provide a set of design guidelines for GPU programming that
are instructive to avoid common pitfalls as well as to extract perfor-
mance from the GPU architecture.

The review from Demattè and Prandi (31) takes stock of some
recent efforts in exploiting the processing power of GPUs for the
simulation of biological systems. General purpose scientific com-
puting on graphics processing units (GPGPU) actually offers the
computational power of a small computer cluster at a cost of a few
hundred dollars. However, computing with a GPU requires the
development of specific algorithms, since the programming para-
digm substantially differs from traditional CPU-based computing.

Other computational infrastructures, like the Grid, developed
for seamless sharing computational power and other resources like
memory, data, and knowledge among virtual organizations, enable
ambitious collaborative projects to take off. The ImmunoGrid
project, for instance, aims at developing agent-based simulations
of the human immune system at a natural scale (32). ImmunoGrid
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has the task of modeling one of the most challenging components
of the virtual physiological human (VPH). The VPH (33) is cur-
rently developed through several initiatives that are expected to
enable an integrative and analytical approach to the study of medi-
cine and physiology and to drive the paradigm shift in health care.
The key benefits that the VPH aims to deliver are a holistic
approach to medicine, personalized care solutions, a reduced need
for animal experiments, and a preventive approach to the treatment
of disease.

Virtual tissues (VT) are clearly of paramount importance for
toxicology. Predicting the risk of chemical-induced human injury is
a major challenge in toxicology (34). The translational issues in
elucidating the complex sequence of events from chemical-induced
molecular changes to adverse tissue level outcomes, and estimating
their risk in humans, provide a practical context for developing VT.
They aim to predict histopathological outcomes from alterations of
cellular phenotypes that are controlled by chemical-induced per-
turbations in molecular pathways. As already emerged from our
excursus in the state of the art, the behaviors of thousands of
heterogeneous cells in tissues can be naturally simulated with
ABM. Further, Shah and Wambaugh state that to extrapolate tox-
icity across species, chemicals, and doses, VT require four main
components: (a) organization of prior knowledge on physiologic
events to define the mechanistic rules for agent behavior, (b)
knowledge on key chemical-induced molecular effects, including
activation of stress sensors and changes in molecular pathways that
alter the cellular phenotype, (c) multiresolution quantitative and
qualitative analysis of histologic data to characterize and measure
chemical-, dose-, and time-dependent physiologic events, and (d)
multi-scale, spatiotemporal simulation frameworks to effectively
calibrate and evaluate VT using experimental data.

We close our introduction to ABM of cellular systems by refer-
ring the readers also to the recent review on Internet resources for
ABM by Devillers et al. (35).

2. Materials

Nowadays, ABMs can be designed on dedicated simulation plat-
form or coded with specialized programming tools and frame-
works. Gilbert and Bankes depicted ABM in a symbiotic
relationship with computing technology (36). Modeling with
agents became feasible only with the advent of personal worksta-
tions. Following the technological development, the scale and
sophistication of the software available for modelers have greatly
increased. Very sophisticated modeling is now viable thanks to
complex algorithms, toolkits, and libraries. The earliest models
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were developed on mainframe computers. From the early 1990s
most models have been developed in conventional programming
languages such as C++, JAVA, and SMALLTALK. But the disad-
vantages of using a general purpose language were evident: basic
algorithms must be always re-implemented, graphics libraries could
be hardly coupled with dynamic modeling, and the resulting code
was easily accessible only to those familiar with the language and
the compiler needed to run it. The first development was repre-
sented by the emergence of several standardized libraries easily
includable in developed ABM programs. REPAST (37), originally
only a set of JAVA libraries, allowed programmers to build simula-
tion environments (e.g., regular lattices), create agents in social
networks, collect data from simulations automatically, and build
user interfaces easily. Its features and design owe a lot to SWARM
(38), one of the first ABM libraries (36). These libraries required
nevertheless a good working knowledge of the programming lan-
guage that they are aimed at, usually JAVA.

In the meanwhile, “agent-oriented programming languages”
began to establish. JADE (39), in development since at least 2001
and adopted by a wide international community, is a very good
example. Being developed over JAVA, it is consequently portable
on all the operating systems supporting JAVA. JADE includes both
the libraries (i.e., the JAVA classes) required to develop application
agents and the run-time environment that provides the basic ser-
vices and that must be active on the device before agents can be
executed. Each instance of the JADE run-time is called container
(since it “contains” agents). The set of all containers is called
platform and provides a homogeneous layer that hides to agents
(and to application developers too) the complexity and the diversity
of the underlying tires (hardware, operating systems, types of net-
work, JAVA Virtual Machine) (40). In this way, it realizes a mid-
dleware, laying “in the middle” between application software that
may be working on different operating systems on different com-
puters. Purpose of a middleware is interoperability, i.e., a set of
services is provided, allowing multiple processes (e.g., agents) run-
ning on one or more machines to interact. In MAS, interoperability
should also be granted between heterogeneous agent-based sys-
tems. The issue of agent systems standardization has been tackled
by FIPA (41). FIPA is an IEEE Computer Society standards orga-
nization that promotes agent-based technology and the interoper-
ability of its standards with other technologies. Originally formed
in 1996 as a Swiss based not-for-profit organization to produce
software standards specifications for heterogeneous and interacting
agents and agent-based systems, in 2005 it was officially accepted
by the IEEE (42) as its 11th standards committee.

JADE is compliant with the FIPA specifications. As a conse-
quence, JADE agents can interoperate with other agents, provided
that they comply with the same standard. Other FIPA-compliant
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agent systems includes Java Intelligent Agent Compontentware
(JIAC) (43), Smart Python multi-Agent Development Environ-
ment (SPADE) (44), which is written in the Python programming
language, and JACK Intelligent Agents (45). JACK is a mature,
cross-platform environment for building, running, and integrating
commercial-grade MASs. It is built on the sound BDI (Beliefs/
Desires/Intentions) logical foundation. BDI is an intuitive and
powerful abstraction that allows developers to manage the com-
plexity of the problem. In JACK, agents are defined in terms of
their beliefs (what they know and what they know how to do), their
desires (what goals they would like to achieve), and their intentions
(the goals they are currently committed to achieving).

Returning to JADE, we can observe that from the functional
point of view it provides the basic services necessary to distributed
peer-to peer applications in the fixed and mobile environment (40).
Each agent can dynamically discover other agents and communi-
cate with them according to the peer-to-peer paradigm. From the
application point of view, each agent is identified by a unique name
and provides a set of services. It can register and modify its services
and/or search for agents providing given services, it can control its
life cycle and, in particular, communicate with all other peers.
Agents communicate by exchanging asynchronous messages, a
communication model almost universally accepted for distributed
and loosely Internet Wireless environment coupled communica-
tions, i.e., between heterogeneous entities that do not know any-
thing about each other. In order to communicate, an agent just
sends a message to a destination. Agents are identified by a name
(no need for the destination object reference to send a message)
and, as a consequence, there is no temporal dependency between
communicating agents. The sender and the receiver could not be
available at the same time. The receiver may not even exist (or not
yet exist) or could not be directly known by the sender that can
specify a property (e.g., “all agents interested in football”) as a
destination. Because agents identifies each other by their name,
hot change of their object reference are transparent to applications.

The platform includes a naming service (ensuring each agent
has a unique name) and a yellow pages service that can be
distributed across multiple hosts. Another very important feature
consists in the availability of a rich suite of graphical tools support-
ing both the debugging and management/monitoring phases of
application life cycle. By means of these tools, it is possible to
remotely control agents, even if already deployed and running:
agent conversations can be emulated, exchanged messages can be
sniffed, tasks can be monitored, agent life cycle can be controlled.

Gilbert and Bankes recognize also that, similarly to what hap-
pened with statistical computing, the real breakthrough in ABM
was the development of “packages,” collections of routines assem-
bled with a common standardized user interface (36). Different
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from “agent-oriented programming languages” these packages or
platforms do not require programming skills and permit direct
manipulation or “visual programming” of the models. They pro-
vide “total immersion” in an environment in which building blocks
can be assembled. The recently developed platforms for ABM offer
also facilities for other phases of a model’s life cycle, model evalua-
tion, and model maintenance.

A list of ABM software, including simulation platforms and
programming systems, highlighting their primary domain of appli-
cation, the programming language (if any), the compliance with
FIPA, and other capabilities (e.g., GIS, 3D) is constantly kept
updated in Wikipedia (46).

Even very basic and widely used software tools can support
ABM. For instance in ref. 47 it is shown how to realize a simulation
of a shopper agent model using a spreadsheet like Microsoft Excel.
In the last years a lot of specialized agent-based platforms have been
developed. Their use, after an initial effort for learning the particu-
lar concepts and characteristics of the platform, can dramatically
speed up not only the process of defining and running the simula-
tions but also the ways in which the results are handled and ana-
lyzed, by connecting with largely used data analysis and
visualization software tools and/or data formats. Another impor-
tant aspect to take into consideration is the scalability of the soft-
ware. The number of agents that have to be simulated for obtaining
significant results can be taken as a rough measure of the needed
computational power. While this number is under the order of 102

or 103 the simulation can usually be carried out on a desktop
machine. If the number is higher there is the need of more powerful
computing architectures for parallel and/or distributed computa-
tion. Some platforms give native support for these architectures
(48). Recently, also GPUs with nVIDIA CUDA programming
environment (49) are starting to be exploited by some platforms
(50). In the latter case the high performance computing power
can be obtained with lower costs with respect to classical parallel
architectures.

Nicolai and Madey (51) give a survey of tools, classifying them
using different characteristics: the programming languages on
which the tool is based, the type of license, the operating systems
for which the tool is available, the domain (including distributed
simulation) for which the platform is specialized (or if it is general
purpose), and the type of support offered to the final user. Other
useful reviews, organized with different views, can be found in refs.
52 and 53.We now briefly describe those tools that historically have
been mostly used and discussed. For a complete list we refer to the
surveys and Web pages given above.

Swarm (38), developed by the Swarm Development Group,
was one of the first general purpose ABM systems. It uses the
Objective-C programming language, but by using a middleware it
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is possible to use also Java. A lot of documentation and tutorial
material is available, and the platform can be used on top of the
most diffused operating systems.

The Recursive Porous Agent Simulation Toolkit (Repast) (37)
was derived from Swarm, but incorporate a lot of facilities to
interact with other software for databases, data analysis, scientific
calculus, and data visualization. It also supports distributed com-
putation, and its specification of agents is based on Java, Groovy
(54), and flowchart diagrams.

The Multi-Agent Simulator Of Neighborhoods. . . or
Networks. . . or something. . . (Mason) (55) is a fully Java program-
mable library for agent-based simulations that can be integrated in
larger applications. It can be easily connected with (possibly 2D or
3D) visualization components.

Graphical and accessible programs for creating ABMs are
AgentSheets (56), NetLogo (57), and SeSAm (58).

NetLogo was originally designed for simple educational pur-
poses but now it is largely used for research as well. Many colleges
have used this as a tool to teach their students about ABM. A similar
program, StarLogo (59), has also been released with similar func-
tionality.

The SeSAm simulator with graphical modeling interface, opti-
mizing model compiler and plug-in system, is used in research
projects and educational environments. Many plug-ins are available
(Evolution, Event-Based Simulation, Communication, GIS,
Graph, FIPA, Import/Export, etc.), and the availability of the
Java source code and plug-in infrastructure allows for further
customization.

AnyLogic (60) is a commercial ABM tool. In AnyLogic the user
can combine ABM with discrete-event (process-centric) modeling
and system dynamics. Visual languages such as state charts, action
charts, process flowcharts, and Stock and flow diagrams are used to
define the behavior of agents.

Concerning ABM platform specifically addressed to the
biological domain, we mention SimBioSys (61), based on C++
language that allows programming evolutionary simulations.

3. Methods

Being ultimately a software product, the design and implementa-
tion of a MAS requires software engineering methodologies to
guide the whole production process. The use of a methodology
helps in correctly and effectively realizing the system of interest in
order to use it for the intended objectives. A methodology should
give guidelines for all the typical phases of the software life cycle:
requirement analysis, design, development, testing, and/or
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validation, deployment, and maintenance. Modern software engi-
neering techniques are mainly focused in software methodologies
for the object-oriented paradigm. Standard formal and semi-formal
graphical specification languages exist for this paradigm (e.g., UML
(62)) and several standardized software engineering processes have
been defined (e.g., Rational Unified Process (63)).

Concerning agent-based systems, agent-oriented software
engineering (AOSE) (64) and agent-based modeling and simula-
tion (ABMS) (65) are recognized as very interesting emerging
paradigms that will have a major impact on the quality of science
and society over the next years. On the one hand, AOSE is
concerned in finding the best way to design and implement an
agent-based system, in order to create a MAS application that is
able to manage and/or resolve a complex problem. On the other
hand, ABMS has been defined as “a third way of doing science” in
addition to traditional deductive and inductive reasoning (66). The
novelty is that the scientist can face the understanding of the
complexity of natural phenomena using the notion of agent to
represent simple components of the real world and program them
making hypotheses on their (simple) behaviors. Then, putting all
together and running the simulation, the global system can be
observed and, if the hypotheses were correct, a (known or
unknown) emergent behavior should appear, that is more than
the sum of the simpler individual behaviors of the components.

In the last years there has been an increasing number of initia-
tives to develop methodologies for the development of agent-based
software systems. We mention GAIA (67, 68), Tropos (69),
Prometheus (70), INGENIAS (71), PASSI (72), ADELFE (73),
PASSIM (74). Each of these methodologies defines a different
meta-model, that is to say, a set of general concepts, and relations
among them, that are considered appropriate to model a MAS.
There are several reviews and comparisons between these different
methodologies, see, for instance, refs. 64 and 75. Unfortunately,
only a few of the methodologies are “complete,” in the sense that
they cover all the phases of the life cycle of an agent-based software.
All methodologies start from the requirements engineering phase
and most of them stop after the design phase, when a detailed
model of the system is available. Some of them continue towards
the phase of implementation, deployment, and testing, but none of
them goes beyond, to the maintenance phase. An attempt to unify
all the existing different methodologies under a general meta-
model has been done by FIPA (41), with the objective of defining
a standard AUML (Agent UML) language (76). However, as the
AUML Web site admits, the process has stopped at the moment
because the new versions of UML seem to already incorporate
notations that could be suitable for designing agent-based systems.
Recently, a unified graphical notation for AOSE (77) has been
proposed.
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Let us briefly describe the meta-models of some of the meth-
odologies.

In GAIA, the basic building blocks of a MAS are: agents, roles,
activities, and protocols. An agent can have several roles, and for each
role it exhibits a different behavior. Roles are defined in terms of
permissions, responsibilities, and activities (i.e., the procedural abil-
ities of the agents) as well as of interactions with other roles. Services
are given by the agents when playing the associated roles and proto-
cols are thought as general stubs for permitting communications
between agents. Moreover, the meta-model contains social aspects
of the MAS that are useful to model open agent systems. Agents
constitute organizations, aggregated into an organizational struc-
ture, and both agents and roles observe organizational rules.

Tropos is an AOSE methodology that is based on three key
ideas: a notion of agent with cognitive skills (goal, plan, and belief)
used along all the software development phases, an approach called
“requirement driven” (a sort of goal-oriented analysis) that is used
along all the phases as well and the construction of a conceptual
model in subsequent steps of refinement until the level of code is
reached. In Tropos the elements of the basic ontology are the
following: actors, goals, planes, resources, dependencies, capabil-
ities, and beliefs. The actor is a strategic entity that exhibits a will.
Analyzing these actors and their dependencies with respect to other
actors, by using techniques such as means-end analysis, and/or
decomposition, it is possible to specify the agents and the relative
capabilities in order to model the system and solve the problem.

ADELFE is mainly concerned to the development of Adaptive
Multi-Agent Systems. Much account is given to cooperation.
Agents are defined with a limited (local) view of the environment
and they have beliefs on the environment, on the other agents, and
on themselves, on which they rely to decide their behaviors. Every
agent can update its beliefs and can share them with other agents.
The ADELFE agent is essentially cooperative, it always tries to solve
a local goal and keep cooperative relationships with others. Its basic
cycle is of the type perceive-decide-act. When a Non-Cooperative-
Situation is detected by an agent (for instance, it received a message
it could not understand) it tries to solve it and to stay cooperative
with the others (for instance, it sends the incomprehensible mes-
sage to other agents that it believes could understand it).

INGENIAS is the result of trying to integrate the best parts of
other methodologies into one and it is also a set of tools to develop
MAS (i.e., INGENIAS Development Kit (78)). The meta-model is
composed of the following concepts:

l Organization, an autonomous entity that has its own goal. It
can be structured in groups and contain workflows (procedural
information to organize tasks, resources, and the participants to
the procedure). The groups can be made of roles, agents,
resources, or applications.
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l Agent, that is, again, an autonomous entity. It can play different
roles and pursue different goals. The agent has a mental state
made of mental entities (goals, facts, beliefs) that is managed by
a mental state manager (to create, modify, delete mental states)
and by a mental state processor (to determine how mental
states evolve and to select the action that the agent should
execute at any moment).

l Interactions that can be initiated by an agent and that may
involve more than two agents.

l Tasks and goals that are related. Every task is assigned an input
and an output and it is specified how they affect the environ-
ment or an agent’s mental state.

l Environment defines what is the perception of every agent and
also identifies the resources of the systems and who is responsi-
ble to manage them.

PASSI (Process for Agent Societies Specification and Imple-
mentation) is an iterative and incremental process for developing
a MAS. It also supports implementation and testing with the devel-
opment toolkit PTK, the Passi Toolkit (79). The PASSI meta-
model is organized in three different domains:

l Problem Domain. It encompasses scenarios, requirements,
ontology, and resources. A scenario is a sequence of interactions
that may happen among actors and the system. Requirements
are usually described using a UML use case diagram. The
ontology defines a set of concepts (categories of the domain),
actions (executable in the domain and that can affect the status
of concepts), and predicates (relating some domain elements).
The resources are those that can be accessed by the agents.

l Agency Domain. The Agent is defined in this domain. Every
agent is responsible of satisfying a set of requirements coming
from the Problem Domain, using its capabilities. Any agent can
play different roles along its life. These roles are parts of an
agent’s behavior that, depending on the specific role, can be
goal driven or can consist of services that the agent gives,
possibly accessing to available resources. There is a service
component that represents the service provided by a role in
terms of functionalities, associated to pre- and post-conditions
and possibly other details to be called properly by other agents
that may require it for their goals. Agents can use tasks or
communication to realize the aims of a role. A task is a portion
of behavior that can be considered atomic. Communication
consists on agents exchanging one or more messages, each of
them expressed according to an Agent Interaction Protocol
that is used to give a certain level of predefined semantics to
the message content.
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l The Solution Domain is where the implemented systems will be
deployed. It describes the code structure in the FIPA-compliant
implementation structure that has been chosen for the imple-
mentation.

Several academic and industrial experiences have already shown
that the use of MAS offers advantages in many different areas such
as manufacturing processes, e-Commerce, and network manage-
ment (80). Since MAS in such contexts need to be tested before
their deployment and execution in real operating environment,
methodologies that support system validation through simulation
(e.g., discrete-event simulation, agent-based simulation, etc.) are
highly required. Verification involves debugging the model to
ensure it works correctly. Validation ensures that you have built
the right model. In fact, simulation of MAS cannot only demon-
strate that MAS correctly behaves according to its specifications but
can also support the analysis of emergent properties of the MAS
under test (74).

PASSIM makes a step towards this direction. PASSIM is an
agent-oriented software development methodology that uses sim-
ulation in two different moments: at an early stage to prototyping
the MAS being developed and at the late stage for validating the
requirements of the developed MAS. It is based on parts coming
from PASSI and from the distilled state charts (DSC)-based simu-
lation methodology (81). The life cycle proposed by PASSIM is
iterative and incremental and is based on the following steps:
requirement specification, design, simulation, coding, and deploy-
ment. After the simulation step the designers can either proceed to
the real implementation or use the results of the simulation as a
feedback on the design and requirement specification phases.
All the phases but simulation are supported by PTK, the PASSI
Toolkit (79). For the simulation phase the DSC Visual Toolset (82)
can be used.

4. Examples

Here we report on the lessons we have learnt in programming
ABMs of cellular systems. We find it very educational and at the
same time we realize that our experience parallels very well the
evolution of this research area.

We proposed a conceptual framework for engineering an agent
society to simulate the behavior of a biological system (83). The
framework is intended to support life scientists in building models
and verifying experimental hypotheses by simulation. We believe
that the use of an agent-based computational platform and of agent
coordination infrastructures—along with the adoption of formal
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methods—will make it possible to harness the complexity of the
biological domain by delegating software agents to simulate bio-
entities. Relevant issues are those of information management, as
well as the phases of model construction, analysis, and validation
(84). The proposed conceptual framework takes into account the
four steps suggested by Kitano (6): (1) system structure identifica-
tion, (2) system behavior analysis, (3) system control, (4) system
design. For each step, our framework exploits agent-oriented meta-
phors, models, and infrastructures to provide systems biologists
with the suitable methodologies and technologies.

As a recurrent benchmark in our “experiments” with ABM we
have chosen the very well-known and studied process of carbohy-
drate oxidation (CO). Our first focus was mainly on the model
engineering issues. In refs. 85 and 86 we adopted the PASSI AOSE
methodology (72). A simulator was designed with the help of the
PASSI Toolkit (79) and implemented on the Hermes agent mid-
dleware platform (87). The PASSI Toolkit provides the system’s
specification by UML diagrams, very helpful for the implementa-
tion (e.g., for the automatic generation of stubs of code) and for
documentation purposes, concerning different design level. PASSI,
proceeding in a top-down way, naturally leads to the identification
of the structure and the behavior of the cell and its components.
Following a macrodescription of CO, we first identified the main
functions and then each cell compartment (or subcompartment)
involved into the process. Any identified compartment was mod-
eled as an active autonomous entity (and each function as its specific
role. The resulting multi-agent model consisted of the three agents:
Cytoplasm, Inner Mitochondrial Membrane, and Mitochondrial
Matrix, as depicted in the agent identification diagram shown in
Fig. 1. Two other auxiliary agents were introduced to support the
interface with the user (Interface Service Agent) and to simulate the
execution environment in which all the reactions take place (Envi-
ronment Service Agent). The environment represents a centralized
coordinator, keeping track of the available quantities of molecules.
The diagram shows also the roles played by each agent in the
identified functions.

Software engineering distinguishes between verification—“did
we build the system right?”—and validation—“did we build the
right system?” (88). Merelli and Young considered the problem of
model validation for simulation models whose structure as well as
behavior mimics the modeled biological systems (89). Intentional
insertion of faults is a well-known software testing technique
(“mutation analysis”). The authors proposed to bring some mod-
ifications on the model of CO in order to mimic some known or
plausible mutations in the subject system. When the modified
model is executed, then a behavior is expected corresponding to
that of the natural system with the same mutation. If the modifica-
tion does not correspond to a known natural mutation we expect a
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biologically plausible change in the behavior. As an example it was
considered a mutation of the gene that produces one of the
enzymes involved in the partial oxidation of pyruvate, thus allowing
its passage from the cytoplasm to the mitochondrion. The previ-
ously developed model was not designed with such modification in
mind. It did not permit to zoom into the cellular compartments
and to “see” the enzymes at work. Therefore, it was not possible,
for instance, to disable a specific enzyme. On the same model the
mutation analysis technique exposed other weaknesses in the struc-
tural and behavioral correspondence with the modeled system. This
analysis leads to a re-implementation of the model to permit a finer
grain level of detail, so zooming into the cytoplasm. The new
implementation was reorganized to address the structural corre-
spondence, making it easy to model a class of mutations that delete
or suppress the activity of particular enzymes. We experimentally
applied a change corresponding to a pyruvate kinase deficiency and
observed resulting changes in the processing of glucose and glyco-
gen, which could be assessed for plausibility by biologists.

The previously described ABM of CO (87) has been built with
a top-down methodology, analyzing the cell at a high level of
abstraction and considering CO as a function at this level. In this
vision we correctly identified the cellular compartments responsible
for it and therefore modeled the cytoplasm and the mitochondria as
interacting agents. Such a model does not permit to zoom into a
deeper level of detail, thus having the possibility to observe how the
cellular behavior emerges from the behavior of the molecular spe-
cies hidden at the higher level. The agent society notion can be used
here for defining an ensemble of cellular agents and the coordina-
tion artifacts involved in the cellular task characterizing the cellular
agent society. The notion of agent society can be suitably adopted
also for scaling with complexity, identifying different levels of
descriptions of the same system. What can be described at one
level as an individual agent, can be described as a society of agents
(zooming in) at a more detailed level—as an ensemble of agents
plus their mediating artifacts—and vice versa (zooming out). Con-
sequently, the model of CO was refined (90), zooming into the
cytoplasm and taking into account the pool of enzymes. In the
implementation, a basic class enzyme was defined to represent a
reactive entity. Then the enzyme was specialized for any of the
enzymes involved in the CO and acting in that compartment. In
particular, for each enzyme subclass the set of affinity to some
metabolites was introduced. In this way, glycolysis can be seen as
a function performed by a society of interacting cellular agents—
the enzymes, whereas the metabolites are considered product of the
environment.

The next step was to provide physical characteristics (shape,
weight, size, position) to agents (both enzymes and metabolites),
to place them in the space and to allow them to autonomously
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move and perceive the spatial neighborhoods, reacting accordingly.
We modeled the cellular spatial environment as a finite continuous
space filled by a hierarchy of entities (“bioagents”) of different
volumes. Enzymes and complexes are much bigger than metabo-
lites and therefore they move much more slowly, but they have
adaptive and reactive capabilities to recognize, in the dynamic
environment of the cytoplasm, their metabolic counterparts in
biochemical reactions. According to kinetic laws and metabolic
maps they will be able to transform substrate bioagents into the
corresponding product of the executable reaction. To have an idea
of the numbers of agents involved, we estimated that in a small
portion (10�15 L) of the cytoplasm, we need to simulate the
movement and the interactions of several millions of autonomous
entities. Reasoning at a suitable level of details—at the mesoscale as
suggested by Wishart et al. (9)—we modeled every biomolecule
involved in a metabolic process as an agent and any biological
compartment as a coordination environment where molecular
bioagents are situated, move and react. We developed a prototype
MAS to test the practicability of our approach focusing on glycolysis
(91). Cytoplasm is characterized by a three-dimensional occupancy
and a number of physical properties like temperature, pH, fluid
viscosity, and concentration—which we suppose uniform—of ions.
The cytoplasm keeps track of the position of all the molecular
bioagents wandering inside it. In our model, the cytoplasm is
intended as a coordination environment and all the enzymes, meta-
bolites, and their intermediate complexes are represented as moving
agents. All the moving agents are characterized by a shape, which at
the mesoscale can be considered spherical, and by a molecular
weight, which can be derived from biochemical databases (e.g.,
Kegg LIGAND (92)). The weight of the intermediate complexes
is intuitively calculated adding the weights of the molecular compo-
nents forming the complex. The radius of the spheres can be easily
calculated from their molecular weight. All the molecular bioagents
(Fig. 2) have a three-coordinate position in the cytoplasmic space
and move according to the Brownian motion, which is the predom-
inant law at this scale. From Stokes and Smoluchowski laws and
Einstein equation on Brownian motion we can assume that the
diffusion of spherical particles in a viscous fluid is depending on
their radius and on the temperature and viscosity of the fluid. The
latter takes also into account the local concentration of molecules
around the moving agent. We divided the molecular bioagents into
active and passive ones. The first (i.e., enzymes and complexes of
enzymes and metabolites), besides the capability to move and per-
ceive their environment, can also perform biochemical reactions.
The latter (i.e., metabolites) have only the capability to move and to
be manipulated—like in the reality—by active bioagents. The meta-
bolites substrates (i.e., “inputs”) of an enzymatic reaction undergo
to specific chemical transformations, which transform them into
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different chemical entities, products (i.e., “outputs”) of the reac-
tion. The enzyme instead remains unaltered by the completed reac-
tion and can therefore try to “capture” new instances of the
substrates into its active site, thus starting a new reaction. The net
result of a completed reaction will be the disappearing of the
instances of substrate bioagents previously captured by the enzyme
and the appearing of new instances of the product bioagents, exactly
as described by the chemical formula.

5. Notes

We have given a large view of the existing methodologies and tools
to realize an agent-based system. It might be difficult for a
researcher, possibly not coming from a computer science field or a
related one, to start facing the task of realizing a MAS for his/her
purposes. For this reason we suggest a useful, in our opinion,
starting place. Inside the wiki pages of Swarm, there is a page
presenting software templates (93). In this page, the so-called
StupidModel, templates are available for using in Swarm,

Fig. 2. A snapshot of our metabolic reaction simulation, showing enzyme, metabolite, and
complex agents moving and acting in a portion of cytoplasm.
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MASON, Repast, and NetLogo. They tackle 16 typical situations of
agent-based programming, each of which is equipped with sample
code realizing the relative function in the four tools. Situations
range from creating a grid world in which agents can move to
making agents born or die and obtaining statistic information
about the MAS evolution as charts or output files. The page con-
tains also other material more specific to Swarm and to other tools.
We think that these templates are a good way to start familiarizing
with the tools and the concepts of ABMS. The code can be copied,
made run as it is in the platforms, and then modified and extended
according to one’s particular needs.
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