
A Constrained ECA Language Supporting Formal Verification of WSNs

Flavio Corradini,Rosario Culmone, Leonardo Mostarda,Luca Tesei
Computer Science Division

University of Camerino, Italy
Email: {flavio.corradini,rosario.culmone,leonardo.mostarda,luca.tesi}@unicam.it

Franco Raimondi
Computer Science Department

Middlesex University, UK
Email: {f.raimondi}@mdx.ac.uk

Abstract—Modern wireless sensor and actuator networks
(WSANs) are composed of spatially distributed low cost nodes
that can contain different sensors and actuators. Event condi-
tion action (ECA) based languages have been widely proposed
in order to program WSANs. Implementing applications by
using ECA rules is an error-prone process thus various formal
methods have been proposed. In spite of this great variety,
formal verification of ECA rules has not been tailored to
the context of WSANs. In this paper we present IRON, an
ECA language for programming WSANs. IRON allows the
automatic verifications of ECA rules. These are used by the
IRON run-time platform in order to implement the required
behaviour.

Keywords-Event condition actions, constraints programming,
wireless sensor and actuator networks, model checking.

I. INTRODUCTION

Recent advances in sensor technology, micro-processors,
wireless communications and Micro Electro-Mechanical
Systems (MEMS) have fostered a strong research interest
in wireless sensor and actuator networks (WSANs). Modern
WSANs are composed of spatially distributed low cost nodes
that can contain different sensors and actuators with good
computation and processing capabilities. WSANs have been
used to build various applications (e.g., home automation
and agriculture automation) and quite often event condition
action (ECA) based languages [1], [2], [3] are used in order
to program them. ECA rules are used to define responses to
events and are specified in the form “on the occurrence of
certain events, if some conditions are true, do these actions”.
Implementing reactive systems by means of ECA rules is an
error-prone process [4] thus various formal methods have
been suggested. For instance approaches based on Petri
Net (PN) [4], SMV [5], SPIN [6] have been proposed.
However, in spite of this range of approaches, the formal
verification of ECA has not been tailored to the context
of WSANs. WSANs requires macroprogramming [7], the
ability of grouping sensors together in order to perform
multicast and broadcast communications.

In this paper we introduce IRON (Integrated Rule ON
data). IRON is a language that supports the organisation of
sensors and actuators into sets [?], allows the definition of
conditions and actions over sets thus abstracting multicast
and broadcast communications. IRON programs are com-
posed of two separate specifications that are static and dy-

namic. The static part is composed of variables declarations
(these are sets, physical and logical devices) plus global
constraints defined over them (i.e., first order formulae).
Constraints can be used in order to specify rules that bind
variables together. The dynamic part is composed of ECA
rules that are defined by the programer. The separation of
static and dynamic parties brings various advantages. The
static model can be reused for different applications. The
same rules, if they are defined over sets, can be reused
when new devices are added and/or removed from these
sets (effectively sets decouple the device instances and the
rule definitions).

IRON supports the formal verification of event-condition-
action rules. More precisely, it supports the verification of
the following properties: (i) termination; (ii) confluence;
(iii) consistency. These are verified by translating IRON
programs into Alloy [8] specifications. This is a solver that
takes the constraints of a model and finds structures that
satisfy them. It can be used both to explore the model by
generating sample structures, and to check properties of the
model by generating counterexamples.

Section II of the paper presents our case study. Section
III details the IRON language and Section IV discusses
all properties that can be verified. Section V discusses the
implementation of IRON. Finally, section VI compares the
presented work with existing related works in this area while
section VIII provides a conclusion and outlines future work.

II. A HOME AUTOMATION CASE STUDY

Monitoring and automatic control of building environment
is a case study considered quite often in the literature [9],
[10]. Home automation can include the following function-
alities: (i) heating, ventilation, and air conditioning (HVAC)
systems; (ii) emergency control systems (fire alarms); (iii)
centralised light control; and (iv) other systems to provide
comfort, energy efficiency and security. In order to validate
our approach we consider the fire alarm system and the
automatic heating application.

The fire alarm system is composed of temperature sensors,
smoke detectors and sprinkler actuators. When a temperature
sensor reads a value that exceeds a specified threshold (e.g.,
50 celsius degree) and a smoke sensor detects smoke all the
sprinklers are activated.

1 program ≡ (device | rule | var_decl)+
2

3 device ≡ physicalDevice | logicalDevice | set
4

5 physicalDevice ≡
6 physical (sensor|actuator) type id [= exp] node(id,id)
7 [in id (, id)*] [where exp]
8

9 logicalDevice ≡
10 logical (sensor | actuator) type id = exp
11 [in id (, id)*] [where exp]
12

13 set ≡ set (sensor | actuator) type id
14

15 rule ≡ rule id on (id)+ when exp then action
16

17 action ≡ [id = exp]+
18

19 exp ≡ exp op exp | (exp) | term
20

21 term ≡ id | int | set_op set id | true | false | function
22

23 type ≡ int | boolean
24

25 set_op ≡ all | any | one | no | lone
26

27 OP ≡ == | != | < | > | <= | >= | + | - | * | / |
28 and | or | not
29

30 var_decl ≡ type id = exp [where exp]

Figure 1. The IRON extended BNF

The automatic heating application is composed of differ-
ent temperature sensors and various heaters and works in
the following way: (i) if there exist a temperature value
that is greater than the maximum temperature Tmax (e.g.,
24 celsius degree), the central heating system turns off;
(ii) if there exist a temperature value that is less than the
minimum temperature Tmin (e.g., 16 celsius degree), the
central heating system turns on.

III. IRON: INTEGRATED RULE ON DATA

Figure 1 describes the IRON grammar. In order to ease
the presentation we use an extended BNF form that uses
regular-expression-like operations. More precisely we use
(x)∗ in order to mean zero or more repetitions of x, (x)+
in order to mean one or more repetitions of x while we use
[x] in order to mean an optional occurrence of x. Boldface
is used in order to denote terminals of the grammar.

An IRON program defines various devices, sets and
variable declarations (line 1 of the grammar).

A. Devices

A device can be physical, logical or a set (line 3 of the
grammar). A physical device defines a piece of hardware
that is physically installed in the environment, it has a type
(i.e., integer 1 or boolean) and can be either a sensor or an
actuator. A physical device has a name and always specifies
the keyword node(id, id) where the first id is an identifier

1For the sake of presentation we only consider integers however IRON
also supports floating points.

1 physical sensor int temperature node(1,1)
2 in TemperatureSet
3 where temperature > −80 and temperature < 60
4 physical sensor int smoke node(2,1)
5 in SmokeSet
6

7 physical actuator boolean sprinkler node(3,1) in
SprinklerSet

8 physical actuator boolean heating = false node(4,1) in
HeatSet

9

10 logical sensor boolean tempAlarm = false
11 logical sensor boolean smokeAlarm = false
12

13 set sensor int TemperatureSet
14 set sensor int SmokeSet
15 set actuator int SprinklerSet

Figure 2. Static model of the home automation case study

that uniquely identifies the physical node while the second
id uniquely identifies a sensor/actuator that is installed on
the node. The keywords in and where can be added in
order to specify a list of sets the physical device belongs to
and a static constraint the device must satisfy, respectively.
A constraint specifies a law that various variables, devices
and sets must satisfy. The use of a constraint is twofold: it
defines valid states of the system regardless of the rules that
are defined. On the other hand it is used at run-time to verify
whether or not any physical device is providing erroneous
data.

Figure 2 shows some declarations that are related to
our home automation case study. The first line declares a
temperature physical sensor that is of the type integer. The
temperature sensor has identifier 1 and is installed on a node
with identifier 1 (this is specified by using the keyword
node(1,1)). This sensor is added to the TemperatureSet set.
A constraint is defined on the temperature sensor that is its
value cannot exceed sixty degree and be under minus eighty
degree celsius. The third line declares a smoke physical
sensor that is of the type boolean.

IRON also supports the definition of logical devices. A
logical device can be set according to the values observed
over different sensors and actuators thus it produces infor-
mation that would be impossible to get by considering a
single physical device. A logical sensor/actuator does not
specify any node(id, id) keyword but must specify an initial
value (line 10 − 13 of the grammar). We emphasise that
logical devices (when possible) should be always preferred
to normal variable definitions since the produced code is
more readable.

The line 10 and 11 of Figure 2 define a tempAlarm and
smokeAlarm boolean logical sensors. As we are going to
see in the next Section this logical devices relates smoke and
temperature data in order to support the detection of fire.

B. Sets

Sets (line 3 of the grammar) are considered to be logical
devices and are used to group together either sensors or

actuators of the same type (line 15 of the grammar). A
programmer can assign values to a set that contains actu-
ators. This assignment can be used in order to instruct all
the actuators to perform a specified action. Effectively, a set
assignment is an abstraction of a multicast communication
primitive that can be used to communicate to actuators an
action to be performed. A programmer can read the value
of a set of sensors in order to define events and specify
conditions. To this end various set operators have been
defined (see Section III-C for details).

Line 11 and line 12 of Figure 2 define a TemperatureSet
and SmokeSet set, respectively. Line 13 defines a set of
actuators.

C. Event condition action rules

The monitoring and control actions are specified by using
event condition action rules. A rule has a name and is
composed of three different parts that are on, when and
then (line 17 of the grammar). After the on keyword there is
a list of devices or variables. Whenever one of them changes
its value the boolean expression that follows the keyword
when is evaluated. When this expression is evaluated to
true the rule can be applied that is the actions listed after the
keyword action can be executed. A boolean expression can
include relational and logical operators, integers, devices,
variables and functions. An action is a list of assignments
to variables, physical actuators and logical devices. Special
operators are used to support the definition of a boolean
condition over a set that are all, any, no, one and lone. All
is a universal operator that allows the definition of conditions
that must be satisfied by all devices belonging to the set.
Any is an existential operator that can be used in order to
specify that at least one of the element of the set must satisfy
the condition. No (one) is useful when we need to express
that no (exactly one) element of the set must verify the
specified condition. lone is useful when we need to express
that at most one element of the set must verify the specified
condition.

The rule of Figure 3 implements the fire alarm policy
that has been presented in Section II. The tempAlarmRule
rule is defined over the set temperatureSet. This rule has
a condition any temperatureSet > 50 that is evaluated
whenever one of the temperature sensors, that belongs to
the temperatureSet set, changes its value. If the condition
is true (one of the sensors has temperature greater than 50)
the action tempAlarm = true is applied. The tempAlarm
variable is a logical sensor that is used in order to signal a
high temperature.

IV. FORMAL VERIFICATIONS OF IRON SPECIFICATIONS

The application of formal verification techniques to ECA-
based programs is essential to support the error-prone ac-
tivity of defining ECA rules. IRON supports the analysis
of dynamic behaviour of ECA rules by first translating

1 //Variables are declared in Figure 2
2

3 rule tempAlarmRule on temperatureSet
4 when any temperatureSet >50
5 then tempAlarm = true
6

7 rule smokeAlarmRule on smokeSet
8 when any smokeSet == true
9 then smokeAlarm = true

10

11 rule fireAlarm on tempAlarm, smokeAlarm
12 when tempAlarm and smokeAlarm
13 then sprinklerSet = true

Figure 3. Fire alarm system

Figure 4. State space, rules and related problems

them into Alloy specifications, then studying the following
correctness properties: (i) termination; (ii) confluence; (iii)
consistency.

A. Termination

IRON specifications can respond to external and internal
events with the application of one or more rules. While exter-
nal events are generated by physical devices, internal events
are generated by the application of actions (e.g., changing
the value of a logical device or a variable). An incorrect
specification can generate a situation of livelock (see Figure
4) where the rules can be applied an infinite number of times.
Livelocks can be easily defined by introducing the concept
of state, state space (in the following referred to as universe
U), domain and stable state.

Definition 1: A state is a n-tuple (v1, . . . , vn) that con-
tains the values of all variables, sensors and actuators. We
denote with vi the value of the variable vari and with Tvari

its type. This can be either integer or boolean.
Definition 2: A universe U (see Figure 4) is the set of all

possible states. This is the cartesian product Tvar1 × . . . ×
Tvarn where Tvari is the type of the variable vari.

Definition 3: Let U be a universe. A domain D (with
D ⊂ U) contains all states that verify the constraints that
are defined in the static part.

1 //Variables are defined in Figure 2
2

3 rule heatingOn on temperatureSet
4 when any temperatureSet < 16
5 then heating = true
6

7 rule heatingOff on temperatureSet
8 when any temperatureSet > 18
9 then heating = false

Figure 5. Heating program with no livelock

Definition 4: A state s = (v1, . . . , vn) is a stable state if
no rules can be applied.

Definition 5: An IRON program satisfies the termination
property when all stable states (that satisfy the conditions
of some rules) always lead (with the application of a finite
number of rules) to a new stable state.

Figure 5 shows a central heating system program with no
livelock. The central heating is turned on when any sensor
in temperatureSet reads a temperature that is less than
16 degrees while the heating is turned off when a sensor
reads a temperature that is greater than 18 degrees. IRON
can be used in order to verify that this policy satisfies
the termination property. This is done by translating the
IRON program into Alloy specifications. Alloy generates all
possible states and connects them with transitions that are
labelled with rule names (see Figure 7). More precisely a
rule r labels a transition exiting from a state s1 and entering
the state s2 when from s1 the application of r leads to the
new state s2 (with s1 6= s2). This labelled graph is called
labelled transition system and can be analysed in order to
check for cycles. If one is found a livelock is reported to
the user. The left-hand box of Figure 7 shows some states
of the central heating system program with no livelock 2.
A state is a couple where the first element is the value of
the temperature sensor and the second value is the state
of the heating actuator. Transitions that are labelled with
rules are used in order to connect states. For instance when
the temperature changes to 15 and the heating is off (the
state is (15, false)) the rule heatingOn can be applied.
The application of this rule changes the state to (15, true).
This is represented with a transition that is labelled with
heatingOn, exits from the state (15, F) and enters the state
(15, T). We remark that the program of Figure 5 satisfies the
termination property since its labelled transition system has
no cycles.

Figure 6 shows a central heating system policy that
contains a livelock. The central heating is turned on when a
sensor reads a temperature that is less than 16 degrees and
the heating is turned off when a sensor reads a temperature
that is less than 18 degrees. The right-hand box of Figure
7 shows some states of the central heating system program

2For the sake of simplicity we do not show all the transitions and all the
states.

1 //Variables are defined in Figure 2
2

3 rule heatingOn on temperatureSet
4 when any temperatureSet < 16
5 then heating = true
6

7 rule heatingOff on temperatureSet
8 when any temperatureSet < 18
9 then heating = off

Figure 6. Heating system with livelock

with livelock. This program does not satisfy the termination
property since there is a cycle.

Figure 7. Labelled transition system for the Heating policies with and
without livelock

B. Confluence

Confluence is an important property that ensures consis-
tency in systems with concurrent behaviour. A program P ,
that verifies the termination property, satisfies confluence
when, starting from the same state, any order of application
of rules will lead to the same stable state.

Figure 8 shows a living room policy that switches both
light and TV on when a presence is detected. This program
satisfies the confluence property. No matter in which order
the rules are applied both light and tv will be on. Figure 9
shows a living room policy with an error. This policy does
not satisfy the confluence property. When the rule LightOn
is executed first the tv will be on while when the rule tvOn
is executed first the tv will be off.

Confluence property is verified in the same way of the
termination property (see Section IV-A for details). IRON
translate the program into Alloy specifications. Alloy gen-
erates a labelled transition system that contains all possible

1 define sensor presenceLiving
2 define actuator boolean tv=false
3 //some of the declarations are omitted
4

5 rule tvOn on presenceLiving
6 when presenceLiving == true
7 then tv = true
8

9 rule LightOn on presenceLiving
10 when presenceLiving == true
11 then light = true

Figure 8. Living room policy that satisfies the confluence property

1 define sensor presenceLiving
2 define actuator boolean tv=false
3 //some of the declarations are omitted
4

5 rule tvOn on presenceLiving
6 when presenceLiving == true
7 then tv = true
8

9 rule LightOn on presenceLiving
10 when presenceLiving == true
11 then tv = false

Figure 9. Living room policy with a non-confluence error

1 //Variables are declared in Figure 2
2

3 rule tempAlarmRule on temperatureSet
4 when any temperatureSet <30 and temperatureSet >30
5 then tempAlarm = true
6

7 rule tempAlarmRule on temperatureSet
8 when any temperatureSet <=1000
9 then tempAlarm = true

Figure 10. Fire alarm system with unused rules

states and the related transitions. The transition system is
checked in order to find non-confluence problems.

C. Consistency

IRON can perform various checks in order to detect rules
that are unused, incorrect, redundant and contradicting.

1) Unused rules: These are rules that can never be
applied. They can be further categorised into inapplicable
rules and rules with contradictory premises. A rule that
is inapplicable has a condition that is only true for states
that are outside the domain (see Figure 7 for a graphical
representation). A rule with a contradictory premise has
some logical contradiction in its condition thus this can never
be true.

Figure 10 shows a fire alarm policy with two rules that
are inapplicable and contradictory. The first rule has a con-
tradictory condition that can never be true (the temperature
cannot be at the same time less and greater than thirty).
The condition of the second rule is true only for values
which are outside the domain (i.e., the set of valid states).
In fact, we have constrained the temperature variable to be
more than −80 (see the declaration of Figure 2 for details).
Unused rules are detected by considering, for each rule r,
all possible states of the domain. When there is no state that
satisfy the condition of r the rule is reported as unused.

2) Incorrect rules: These are rules that can lead to a state
that is outside the domain (i.e., an invalid state). They can
be further categorised into out-of-domain rules and partially
applicable rules. A rule is of the type out-of-domain when
its application leads to a state that is outside the domain
(i.e., an invalid state). A rule is partially applicable when
the following two conditions hold: (i) if the rule is applied
to a valid state the execution of the action will bring the

system into a new valid state; (ii) the condition is also true
for invalid states (i.e., states that are outside the domain).
Incorrect rules are detected by considering, for each rule r,
all possible states of the domain.

3) Redundant rules: Redundancy is the case where there
are rules or chain of rules that are identical. The condition
of these rules is always true for the same states and when
applied lead always to the same state. A special case of
redundancy are subsumed rules where one rule r1 contains
more prerequisites (conditions) of another rule r2 that is
whenever the rule r1 is applicable then the rule r2 is also
applicable. Redundant rules are detected by considering, for
each rule r, all possible states of the domain.

V. IRON IMPLEMENTATION

We have implemented an IRON prototype that is com-
posed of a compiler, a graphic editor, a translator and a
middleware.

The IRON compiler is able to perform some syntactic
and semantic checks while the graphic editor allows the
graphical visualisation/definition of programs. In Figure 11
we show the graphical user interface of IRON. Green and
red circles represent boolean read-only devices (sensors)
and writable ones (actuators) respectively. Green and red
rectangles represent integer read-only devices and writable
ones respectively. Transparent circles can be used to group
together devices and variables in order to form sets. Grey
squares represent rules. An arrow exits a device/variable
and enters a rule when this device/variable is used in the
condition of the rule. An arrow exits a rule and enters
a device/variable when this is updated by the actions of
the rule. These graphical interface has been proved very
useful when ECA programs need to be written by non-expert
programmers.

Figure 11. IRON GUI

The translator takes as an input IRON programs and
produces Alloy specifications. Alloy is used to verify all
properties that are termination, confluence and consistency
(see Section IV for details). We have implemented a mid-
dleware layer that is capable of receiving sensor readings
from different protocols such as ZigBee [11] and tinyOS

[12]. The middleware forwards all the sensor readings to
the IRON run time support that applies all the rules. The
interaction with actuators is performed via standard APIs
that are implemented by using group communication. In the
case of tinyOS we have used a clustering approach [13]
in order to save energy. We have used xm1000 motes and
zigbee hardware. The xm1000 is equipped with temperature,
light and humidity sensors and runs tinyOS while smoke
detectors and heating control actuators are zigbee devices.

VI. RELATED WORK

The event condition action programming paradigm has
been extensively applied in wireless sensor networks and
actuators. In [1] the authors present an efficient policy
system that enables policy interpretation and enforcement
on wireless sensors. Their approach support sensor level
adaptation and fine-grained access control. In [2] the authors
present a rule-based paradigm to allow sensor networks to
be programmed at run time in order to support adaptation.
The approach presented in [3] describes an event condition
action based middleware for programming wireless sensor
networks. While all the aforementioned approaches provide
quite powerful tools for programming WSNs they do not
provide any automatic means of translating programs into
formal specifications that can be automatically verified.

Various approaches have been proposed in order to apply
formal methods to event-condition-action rules. In [4] the
authors translate a set of ECA rules into a Petri Net in
order to verify termination and confluence. The approaches
presented in [6] and [5] use the model checkers SPIN and
SMV in order to verify termination. To the best of our
knowledge although various approaches for verifying ECA
rules have been proposed they have not been tailored to the
context of WSANs. WSANs requires macroprogramming
[7], the ability to group sensors in order to perform multicast
and broadcast communications. IRON is a language that
supports the categorisation of sensors into sets [14], allows
the definition of properties over sets and support multi-
cast and broadcast abstractions. IRON allows the automatic
verification of ECA rules by translating them into Alloy
specifications.

VII. ACKNOWLEDGEMENTS

This work has been partially supported by the MIUR
PRIN project CINA (2010LHT4KM).

VIII. CONCLUSIONS

In this paper we present an ECA based language that is
called IRON. IRON supports the organisation of sensors and
actuators into sets, allows the definition of conditions and
actions over sets thus abstracting multicast and broadcast
communications. IRON programs are composed of two
separate specifications that are static and dynamic. The static
part allows the definition of physical and logical devices, sets

and variables plus first order constraints. The dynamic part
is composed of ECA rules. IRON supports the formal verifi-
cation of termination, confluence and consistency properties.
These are verified by translating IRON programs into Alloy
[8] specifications.

REFERENCES

[1] Y. Zhu, S. L. Keoh, M. Sloman, E. Lupu, N. Dulay, and
N. Pryce, “An efficient policy system for body sensor net-
works,” in 14th International Conference on Parallel and
Distributed Systems (ICPADS 2008), 2008, pp. 383–390.

[2] X. Fei and E. H. Magill, “Reed: Flexible rule based pro-
gramming of wireless sensor networks at runtime.” Computer
Networks, vol. 56, no. 14, pp. 3287–3299, 2012.

[3] G. Russello, L. Mostarda, and N. Dulay, “A policy-based pub-
lish/subscribe middleware for sense-and-react applications,”
Journal of Systems and Software, vol. 84, no. 4, pp. 638–
654, 2011.

[4] X. Jin, Y. Lembachar, and G. Ciardo, “Symbolic verification
of eca rules,” in International Workshop on Petri Nets and
Software Engineering, 2013.

[5] I. Ray and I. Ray, “Detecting termination of active database
rules using symbolic model checking.” in ADBIS, ser. Lecture
Notes in Computer Science, A. Caplinskas and J. Eder, Eds.,
vol. 2151. Springer, 2001, pp. 266–279.

[6] E.-H. Choi, T. Tsuchiya, and T. Kikuno, “Model checking
active database rules under various rule processing strategies.”
IPSJ Digital Courier, vol. 2, no. 13, pp. 826–839, 2006.

[7] R. Sugihara and R. K. Gupta, “Programming models for
sensor networks: A survey,” ACM Trans. Sen. Netw., vol. 4,
no. 2, pp. 8:1–8:29, Apr. 2008.

[8] D. Jackson, Software Abstractions: Logic, Language, and
Analysis. The MIT Press, 2011.

[9] D.-M. Han and J.-H. Lim, “Smart home energy management
system using ieee 802.15.4 and zigbee,” Consumer Electron-
ics, IEEE Transactions on, vol. 56, no. 3, pp. 1403 –1410,
aug. 2010.

[10] K. Gill, S.-H. Yang, F. Yao, and X. Lu, “A zigbee-based home
automation system,” Consumer Electronics, IEEE Transac-
tions on, vol. 55, no. 2, pp. 422 –430, may 2009.

[11] S. Farahani, ZigBee Wireless Networks and Transceivers.
Newton, MA, USA: Newnes, 2008.

[12] P. Levis, S. Madden, J. Polastre, R. Szewczyk, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler, “Tinyos:
An operating system for sensor networks,” in in Ambient
Intelligence. Springer Verlag, 2004.

[13] E. Ever, R. Luchmun, L. Mostarda, A. Navarra, and P. Shah,
“UHEED - an unequal clustering algorithm for wireless
sensor networks,” in SENSORNETS 2012, 2012, pp. 185–193.

[14] L. Mostarda, S. Marinovic, and N. Dulay, “Distributed or-
chestration of pervasive services,” in 24th IEEE IAINA 2010,
Perth, Australia, 20-13 April 2010, 2010, pp. 166–173.

